添加proxy代理功能

This commit is contained in:
LINSTCL 2023-03-03 14:12:53 +08:00
parent 891ee0fac8
commit c57642bd4e
3 changed files with 71 additions and 34 deletions

View File

@ -20,6 +20,7 @@ mirai_http_api_config = {
# [必需] OpenAI的配置
# api_key: OpenAI的API Key
# http_proxy: 请求OpenAI时使用的代理None为不使用https和socks5暂不能使用
# 若只有一个api-key请直接修改以下内容中的"openai_api_key"为你的api-key
#
# 如准备了多个api-key可以以字典的形式填写程序会自动选择可用的api-key
@ -30,11 +31,13 @@ mirai_http_api_config = {
# "key1": "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
# "key2": "sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
# },
# "http_proxy": "http://127.0.0.1:12345"
# }
openai_config = {
"api_key": {
"default": "openai_api_key"
},
"http_proxy": None
}
# [必需] 管理员QQ号用于接收报错等通知及执行管理员级别指令

View File

@ -36,7 +36,11 @@ class OpenAIInteract:
config = pkg.utils.context.get_config()
# 根据模型选择使用的接口
ai: ModelRequest = create_openai_model_request(config.completion_api_params['model'], 'user')
ai: ModelRequest = create_openai_model_request(
config.completion_api_params['model'],
'user',
config.openai_config["http_proxy"]
)
ai.request(
prompts,
**config.completion_api_params

View File

@ -1,5 +1,5 @@
# 提供与模型交互的抽象接口
import openai, logging
import openai, logging, threading, asyncio
COMPLETION_MODELS = {
'text-davinci-003',
@ -26,48 +26,74 @@ IMAGE_MODELS = {
class ModelRequest():
"""模型请求抽象"""
"""GPT父"""
can_chat = False
runtime:threading.Thread = None
ret = ""
proxy:str = None
def __init__(self, model_name, user_name, request_fun):
def __init__(self, model_name, user_name, request_fun, http_proxy:str = None):
self.model_name = model_name
self.user_name = user_name
self.request_fun = request_fun
if http_proxy != None:
self.proxy = http_proxy
openai.proxy = self.proxy
async def __a_request__(self, **kwargs):
self.ret = await self.request_fun(**kwargs)
def request(self, **kwargs):
ret = self.request_fun(**kwargs)
self.ret = self.ret_handle(ret)
self.message = self.ret["choices"][0]["message"]
if self.proxy != None: #异步请求
self.runtime = threading.Thread(
target=asyncio.run,
args=(self.__a_request__(**kwargs),)
)
self.runtime.start()
else: #同步请求
self.ret = self.request_fun(**kwargs)
def __msg_handle__(self, msg):
"""将prompt dict转换成接口需要的格式"""
return msg
def ret_handle(self):
'''
API消息返回处理函数
若重写该方法应检查异步线程状态或在需要检查处super该方法
'''
if self.runtime != None and isinstance(self.runtime, threading.Thread):
self.runtime.join()
return
def get_total_tokens(self):
return self.ret['usage']['total_tokens']
try:
return self.ret['usage']['total_tokens']
except Exception:
return 0
def get_message(self):
return self.message
def get_response(self):
return self.ret
class ChatCompletionModel(ModelRequest):
"""ChatCompletion接口实现"""
"""ChatCompletion类模型"""
Chat_role = ['system', 'user', 'assistant']
def __init__(self, model_name, user_name):
request_fun = openai.ChatCompletion.create
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.ChatCompletion.create
else:
request_fun = openai.ChatCompletion.acreate
self.can_chat = True
super().__init__(model_name, user_name, request_fun)
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
self.ret = self.request_fun(messages = self.__msg_handle__(prompts), **kwargs, user=self.user_name)
prompts = self.__msg_handle__(prompts)
kwargs['messages'] = prompts
super().request(**kwargs)
self.ret_handle()
self.message = self.ret["choices"][0]["message"]['content']
def __msg_handle__(self, msgs):
temp_msgs = []
@ -76,20 +102,24 @@ class ChatCompletionModel(ModelRequest):
temp_msgs.append(msg.copy())
return temp_msgs
def get_content(self):
return self.message
def get_message(self):
return self.ret["choices"][0]["message"]['content'] #需要时直接加载加快请求速度,降低内存消耗
class CompletionModel(ModelRequest):
"""Completion接口实现"""
def __init__(self, model_name, user_name):
request_fun = openai.Completion.create
super().__init__(model_name, user_name, request_fun)
"""Completion类模型"""
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.Completion.create
else:
request_fun = openai.Completion.acreate
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
self.ret = self.request_fun(prompt = self.__msg_handle__(prompts), **kwargs)
prompts = self.__msg_handle__(prompts)
kwargs['prompt'] = prompts
super().request(**kwargs)
self.ret_handle()
self.message = self.ret["choices"][0]["text"]
def __msg_handle__(self, msgs):
prompt = ''
@ -102,17 +132,17 @@ class CompletionModel(ModelRequest):
# prompt = prompt + "{}:{}\n".format(msg['role'] , msg['content'])
prompt = prompt + "assistant: "
return prompt
def get_text(self):
return self.message
def create_openai_model_request(model_name: str, user_name: str = 'user') -> ModelRequest:
def get_message(self):
return self.ret["choices"][0]["text"]
def create_openai_model_request(model_name: str, user_name: str = 'user', http_proxy:str = None) -> ModelRequest:
"""使用给定的模型名称创建模型请求对象"""
if model_name in CHAT_COMPLETION_MODELS:
model = ChatCompletionModel(model_name, user_name)
model = ChatCompletionModel(model_name, user_name, http_proxy)
elif model_name in COMPLETION_MODELS:
model = CompletionModel(model_name, user_name)
model = CompletionModel(model_name, user_name, http_proxy)
else :
log = "找不到模型[{}],请检查配置文件".format(model_name)
logging.error(log)