QChatGPT/pkg/openai/modelmgr.py
2023-03-03 15:20:42 +08:00

153 lines
4.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 提供与模型交互的抽象接口
import openai, logging, threading, asyncio
COMPLETION_MODELS = {
'text-davinci-003',
'text-davinci-002',
'code-davinci-002',
'code-cushman-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
}
CHAT_COMPLETION_MODELS = {
'gpt-3.5-turbo',
'gpt-3.5-turbo-0301',
}
EDIT_MODELS = {
}
IMAGE_MODELS = {
}
class ModelRequest():
"""GPT父类"""
can_chat = False
runtime:threading.Thread = None
ret = ""
proxy:str = None
def __init__(self, model_name, user_name, request_fun, http_proxy:str = None):
self.model_name = model_name
self.user_name = user_name
self.request_fun = request_fun
if http_proxy != None:
self.proxy = http_proxy
openai.proxy = self.proxy
async def __a_request__(self, **kwargs):
self.ret = await self.request_fun(**kwargs)
def request(self, **kwargs):
if self.proxy != None: #异步请求
loop = asyncio.new_event_loop()
self.runtime = threading.Thread(
target=loop.run_until_complete,
args=(self.__a_request__(**kwargs),)
)
self.runtime.start()
else: #同步请求
self.ret = self.request_fun(**kwargs)
def __msg_handle__(self, msg):
"""将prompt dict转换成接口需要的格式"""
return msg
def ret_handle(self):
'''
API消息返回处理函数
若重写该方法应检查异步线程状态或在需要检查处super该方法
'''
if self.runtime != None and isinstance(self.runtime, threading.Thread):
self.runtime.join()
return
def get_total_tokens(self):
try:
return self.ret['usage']['total_tokens']
except Exception:
return 0
def get_message(self):
return self.message
def get_response(self):
return self.ret
class ChatCompletionModel(ModelRequest):
"""ChatCompletion类模型"""
Chat_role = ['system', 'user', 'assistant']
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.ChatCompletion.create
else:
request_fun = openai.ChatCompletion.acreate
self.can_chat = True
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['messages'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
temp_msgs = []
# 把msgs拷贝进temp_msgs
for msg in msgs:
temp_msgs.append(msg.copy())
return temp_msgs
def get_message(self):
return self.ret["choices"][0]["message"]['content'] #需要时直接加载加快请求速度,降低内存消耗
class CompletionModel(ModelRequest):
"""Completion类模型"""
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.Completion.create
else:
request_fun = openai.Completion.acreate
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['prompt'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
prompt = ''
for msg in msgs:
prompt = prompt + "{}: {}\n".format(msg['role'], msg['content'])
# for msg in msgs:
# if msg['role'] == 'assistant':
# prompt = prompt + "{}\n".format(msg['content'])
# else:
# prompt = prompt + "{}:{}\n".format(msg['role'] , msg['content'])
prompt = prompt + "assistant: "
return prompt
def get_message(self):
return self.ret["choices"][0]["text"]
def create_openai_model_request(model_name: str, user_name: str = 'user', http_proxy:str = None) -> ModelRequest:
"""使用给定的模型名称创建模型请求对象"""
if model_name in CHAT_COMPLETION_MODELS:
model = ChatCompletionModel(model_name, user_name, http_proxy)
elif model_name in COMPLETION_MODELS:
model = CompletionModel(model_name, user_name, http_proxy)
else :
log = "找不到模型[{}],请检查配置文件".format(model_name)
logging.error(log)
raise IndexError(log)
logging.debug("使用接口[{}]创建模型请求[{}]".format(model.__class__.__name__, model_name))
return model