mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
chore: cleanup ruff flake8-simplify linter rules (#8286)
Co-authored-by: -LAN- <laipz8200@outlook.com>
This commit is contained in:
parent
0bb7569d46
commit
0f14873255
|
@ -65,7 +65,7 @@ class BasedGenerateTaskPipeline:
|
|||
|
||||
if isinstance(e, InvokeAuthorizationError):
|
||||
err = InvokeAuthorizationError("Incorrect API key provided")
|
||||
elif isinstance(e, InvokeError) or isinstance(e, ValueError):
|
||||
elif isinstance(e, InvokeError | ValueError):
|
||||
err = e
|
||||
else:
|
||||
err = Exception(e.description if getattr(e, "description", None) is not None else str(e))
|
||||
|
|
|
@ -45,7 +45,7 @@ class BaichuanModel:
|
|||
parameters: dict[str, Any],
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
) -> dict[str, Any]:
|
||||
if model in self._model_mapping.keys():
|
||||
if model in self._model_mapping:
|
||||
# the LargeLanguageModel._code_block_mode_wrapper() method will remove the response_format of parameters.
|
||||
# we need to rename it to res_format to get its value
|
||||
if parameters.get("res_format") == "json_object":
|
||||
|
@ -94,7 +94,7 @@ class BaichuanModel:
|
|||
timeout: int,
|
||||
tools: Optional[list[PromptMessageTool]] = None,
|
||||
) -> Union[Iterator, dict]:
|
||||
if model in self._model_mapping.keys():
|
||||
if model in self._model_mapping:
|
||||
api_base = "https://api.baichuan-ai.com/v1/chat/completions"
|
||||
else:
|
||||
raise BadRequestError(f"Unknown model: {model}")
|
||||
|
|
|
@ -337,9 +337,7 @@ class GoogleLargeLanguageModel(LargeLanguageModel):
|
|||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message_text = f"{ai_prompt} {content}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
elif isinstance(message, SystemPromptMessage | ToolPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
|
|
@ -442,9 +442,7 @@ class OCILargeLanguageModel(LargeLanguageModel):
|
|||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message_text = f"{ai_prompt} {content}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
elif isinstance(message, SystemPromptMessage | ToolPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
|
|
@ -350,9 +350,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
|
|||
break
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message_text = f"{ai_prompt} {content}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message_text = content
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
elif isinstance(message, SystemPromptMessage | ToolPromptMessage):
|
||||
message_text = content
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
|
|
@ -633,9 +633,7 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
|
|||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message_text = f"{ai_prompt} {content}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
elif isinstance(message, SystemPromptMessage | ToolPromptMessage):
|
||||
message_text = f"{human_prompt} {content}"
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
|
|
@ -272,11 +272,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
|
|||
"""
|
||||
text = ""
|
||||
for item in message:
|
||||
if isinstance(item, UserPromptMessage):
|
||||
text += item.content
|
||||
elif isinstance(item, SystemPromptMessage):
|
||||
text += item.content
|
||||
elif isinstance(item, AssistantPromptMessage):
|
||||
if isinstance(item, UserPromptMessage | SystemPromptMessage | AssistantPromptMessage):
|
||||
text += item.content
|
||||
else:
|
||||
raise NotImplementedError(f"PromptMessage type {type(item)} is not supported")
|
||||
|
|
|
@ -209,9 +209,10 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
):
|
||||
new_prompt_messages[-1].content += "\n\n" + copy_prompt_message.content
|
||||
else:
|
||||
if copy_prompt_message.role == PromptMessageRole.USER:
|
||||
new_prompt_messages.append(copy_prompt_message)
|
||||
elif copy_prompt_message.role == PromptMessageRole.TOOL:
|
||||
if (
|
||||
copy_prompt_message.role == PromptMessageRole.USER
|
||||
or copy_prompt_message.role == PromptMessageRole.TOOL
|
||||
):
|
||||
new_prompt_messages.append(copy_prompt_message)
|
||||
elif copy_prompt_message.role == PromptMessageRole.SYSTEM:
|
||||
new_prompt_message = SystemPromptMessage(content=copy_prompt_message.content)
|
||||
|
@ -461,9 +462,7 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
|
|||
message_text = f"{human_prompt} {content}"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
message_text = f"{ai_prompt} {content}"
|
||||
elif isinstance(message, SystemPromptMessage):
|
||||
message_text = content
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
elif isinstance(message, SystemPromptMessage | ToolPromptMessage):
|
||||
message_text = content
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
|
|
|
@ -56,14 +56,7 @@ class KeywordsModeration(Moderation):
|
|||
)
|
||||
|
||||
def _is_violated(self, inputs: dict, keywords_list: list) -> bool:
|
||||
for value in inputs.values():
|
||||
if self._check_keywords_in_value(keywords_list, value):
|
||||
return True
|
||||
return any(self._check_keywords_in_value(keywords_list, value) for value in inputs.values())
|
||||
|
||||
return False
|
||||
|
||||
def _check_keywords_in_value(self, keywords_list, value):
|
||||
for keyword in keywords_list:
|
||||
if keyword.lower() in value.lower():
|
||||
return True
|
||||
return False
|
||||
def _check_keywords_in_value(self, keywords_list, value) -> bool:
|
||||
return any(keyword.lower() in value.lower() for keyword in keywords_list)
|
||||
|
|
|
@ -223,7 +223,7 @@ class OpsTraceManager:
|
|||
:return:
|
||||
"""
|
||||
# auth check
|
||||
if tracing_provider not in provider_config_map.keys() and tracing_provider is not None:
|
||||
if tracing_provider not in provider_config_map and tracing_provider is not None:
|
||||
raise ValueError(f"Invalid tracing provider: {tracing_provider}")
|
||||
|
||||
app_config: App = db.session.query(App).filter(App.id == app_id).first()
|
||||
|
|
|
@ -127,8 +127,7 @@ class RelytVector(BaseVector):
|
|||
)
|
||||
|
||||
chunks_table_data = []
|
||||
with self.client.connect() as conn:
|
||||
with conn.begin():
|
||||
with self.client.connect() as conn, conn.begin():
|
||||
for document, metadata, chunk_id, embedding in zip(texts, metadatas, ids, embeddings):
|
||||
chunks_table_data.append(
|
||||
{
|
||||
|
@ -186,8 +185,7 @@ class RelytVector(BaseVector):
|
|||
)
|
||||
|
||||
try:
|
||||
with self.client.connect() as conn:
|
||||
with conn.begin():
|
||||
with self.client.connect() as conn, conn.begin():
|
||||
delete_condition = chunks_table.c.id.in_(ids)
|
||||
conn.execute(chunks_table.delete().where(delete_condition))
|
||||
return True
|
||||
|
|
|
@ -63,10 +63,7 @@ class TencentVector(BaseVector):
|
|||
|
||||
def _has_collection(self) -> bool:
|
||||
collections = self._db.list_collections()
|
||||
for collection in collections:
|
||||
if collection.collection_name == self._collection_name:
|
||||
return True
|
||||
return False
|
||||
return any(collection.collection_name == self._collection_name for collection in collections)
|
||||
|
||||
def _create_collection(self, dimension: int) -> None:
|
||||
lock_name = "vector_indexing_lock_{}".format(self._collection_name)
|
||||
|
|
|
@ -124,8 +124,7 @@ class TiDBVector(BaseVector):
|
|||
texts = [d.page_content for d in documents]
|
||||
|
||||
chunks_table_data = []
|
||||
with self._engine.connect() as conn:
|
||||
with conn.begin():
|
||||
with self._engine.connect() as conn, conn.begin():
|
||||
for id, text, meta, embedding in zip(ids, texts, metas, embeddings):
|
||||
chunks_table_data.append({"id": id, "vector": embedding, "text": text, "meta": meta})
|
||||
|
||||
|
@ -160,8 +159,7 @@ class TiDBVector(BaseVector):
|
|||
raise ValueError("No ids provided to delete.")
|
||||
table = self._table(self._dimension)
|
||||
try:
|
||||
with self._engine.connect() as conn:
|
||||
with conn.begin():
|
||||
with self._engine.connect() as conn, conn.begin():
|
||||
delete_condition = table.c.id.in_(ids)
|
||||
conn.execute(table.delete().where(delete_condition))
|
||||
return True
|
||||
|
|
|
@ -48,7 +48,8 @@ class WordExtractor(BaseExtractor):
|
|||
raise ValueError(f"Check the url of your file; returned status code {r.status_code}")
|
||||
|
||||
self.web_path = self.file_path
|
||||
self.temp_file = tempfile.NamedTemporaryFile()
|
||||
# TODO: use a better way to handle the file
|
||||
self.temp_file = tempfile.NamedTemporaryFile() # noqa: SIM115
|
||||
self.temp_file.write(r.content)
|
||||
self.file_path = self.temp_file.name
|
||||
elif not os.path.isfile(self.file_path):
|
||||
|
|
|
@ -120,8 +120,8 @@ class WeightRerankRunner:
|
|||
intersection = set(vec1.keys()) & set(vec2.keys())
|
||||
numerator = sum(vec1[x] * vec2[x] for x in intersection)
|
||||
|
||||
sum1 = sum(vec1[x] ** 2 for x in vec1.keys())
|
||||
sum2 = sum(vec2[x] ** 2 for x in vec2.keys())
|
||||
sum1 = sum(vec1[x] ** 2 for x in vec1)
|
||||
sum2 = sum(vec2[x] ** 2 for x in vec2)
|
||||
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
||||
|
||||
if not denominator:
|
||||
|
|
|
@ -581,8 +581,8 @@ class DatasetRetrieval:
|
|||
intersection = set(vec1.keys()) & set(vec2.keys())
|
||||
numerator = sum(vec1[x] * vec2[x] for x in intersection)
|
||||
|
||||
sum1 = sum(vec1[x] ** 2 for x in vec1.keys())
|
||||
sum2 = sum(vec2[x] ** 2 for x in vec2.keys())
|
||||
sum1 = sum(vec1[x] ** 2 for x in vec1)
|
||||
sum2 = sum(vec2[x] ** 2 for x in vec2)
|
||||
denominator = math.sqrt(sum1) * math.sqrt(sum2)
|
||||
|
||||
if not denominator:
|
||||
|
|
|
@ -201,9 +201,7 @@ class ListWorksheetRecordsTool(BuiltinTool):
|
|||
elif value.startswith('[{"organizeId"'):
|
||||
value = json.loads(value)
|
||||
value = "、".join([item["organizeName"] for item in value])
|
||||
elif value.startswith('[{"file_id"'):
|
||||
value = ""
|
||||
elif value == "[]":
|
||||
elif value.startswith('[{"file_id"') or value == "[]":
|
||||
value = ""
|
||||
elif hasattr(value, "accountId"):
|
||||
value = value["fullname"]
|
||||
|
|
|
@ -35,7 +35,7 @@ class NovitaAiModelQueryTool(BuiltinTool):
|
|||
models_data=[],
|
||||
headers=headers,
|
||||
params=params,
|
||||
recursive=False if result_type == "first sd_name" or result_type == "first name sd_name pair" else True,
|
||||
recursive=not (result_type == "first sd_name" or result_type == "first name sd_name pair"),
|
||||
)
|
||||
|
||||
result_str = ""
|
||||
|
|
|
@ -39,7 +39,7 @@ class QRCodeGeneratorTool(BuiltinTool):
|
|||
|
||||
# get error_correction
|
||||
error_correction = tool_parameters.get("error_correction", "")
|
||||
if error_correction not in self.error_correction_levels.keys():
|
||||
if error_correction not in self.error_correction_levels:
|
||||
return self.create_text_message("Invalid parameter error_correction")
|
||||
|
||||
try:
|
||||
|
|
|
@ -44,36 +44,36 @@ class SearchAPI:
|
|||
@staticmethod
|
||||
def _process_response(res: dict, type: str) -> str:
|
||||
"""Process response from SearchAPI."""
|
||||
if "error" in res.keys():
|
||||
if "error" in res:
|
||||
raise ValueError(f"Got error from SearchApi: {res['error']}")
|
||||
|
||||
toret = ""
|
||||
if type == "text":
|
||||
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
|
||||
if "answer_box" in res and "answer" in res["answer_box"]:
|
||||
toret += res["answer_box"]["answer"] + "\n"
|
||||
if "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
|
||||
if "answer_box" in res and "snippet" in res["answer_box"]:
|
||||
toret += res["answer_box"]["snippet"] + "\n"
|
||||
if "knowledge_graph" in res.keys() and "description" in res["knowledge_graph"].keys():
|
||||
if "knowledge_graph" in res and "description" in res["knowledge_graph"]:
|
||||
toret += res["knowledge_graph"]["description"] + "\n"
|
||||
if "organic_results" in res.keys() and "snippet" in res["organic_results"][0].keys():
|
||||
if "organic_results" in res and "snippet" in res["organic_results"][0]:
|
||||
for item in res["organic_results"]:
|
||||
toret += "content: " + item["snippet"] + "\n" + "link: " + item["link"] + "\n"
|
||||
if toret == "":
|
||||
toret = "No good search result found"
|
||||
|
||||
elif type == "link":
|
||||
if "answer_box" in res.keys() and "organic_result" in res["answer_box"].keys():
|
||||
if "title" in res["answer_box"]["organic_result"].keys():
|
||||
if "answer_box" in res and "organic_result" in res["answer_box"]:
|
||||
if "title" in res["answer_box"]["organic_result"]:
|
||||
toret = f"[{res['answer_box']['organic_result']['title']}]({res['answer_box']['organic_result']['link']})\n"
|
||||
elif "organic_results" in res.keys() and "link" in res["organic_results"][0].keys():
|
||||
elif "organic_results" in res and "link" in res["organic_results"][0]:
|
||||
toret = ""
|
||||
for item in res["organic_results"]:
|
||||
toret += f"[{item['title']}]({item['link']})\n"
|
||||
elif "related_questions" in res.keys() and "link" in res["related_questions"][0].keys():
|
||||
elif "related_questions" in res and "link" in res["related_questions"][0]:
|
||||
toret = ""
|
||||
for item in res["related_questions"]:
|
||||
toret += f"[{item['title']}]({item['link']})\n"
|
||||
elif "related_searches" in res.keys() and "link" in res["related_searches"][0].keys():
|
||||
elif "related_searches" in res and "link" in res["related_searches"][0]:
|
||||
toret = ""
|
||||
for item in res["related_searches"]:
|
||||
toret += f"[{item['title']}]({item['link']})\n"
|
||||
|
|
|
@ -44,12 +44,12 @@ class SearchAPI:
|
|||
@staticmethod
|
||||
def _process_response(res: dict, type: str) -> str:
|
||||
"""Process response from SearchAPI."""
|
||||
if "error" in res.keys():
|
||||
if "error" in res:
|
||||
raise ValueError(f"Got error from SearchApi: {res['error']}")
|
||||
|
||||
toret = ""
|
||||
if type == "text":
|
||||
if "jobs" in res.keys() and "title" in res["jobs"][0].keys():
|
||||
if "jobs" in res and "title" in res["jobs"][0]:
|
||||
for item in res["jobs"]:
|
||||
toret += (
|
||||
"title: "
|
||||
|
@ -65,7 +65,7 @@ class SearchAPI:
|
|||
toret = "No good search result found"
|
||||
|
||||
elif type == "link":
|
||||
if "jobs" in res.keys() and "apply_link" in res["jobs"][0].keys():
|
||||
if "jobs" in res and "apply_link" in res["jobs"][0]:
|
||||
for item in res["jobs"]:
|
||||
toret += f"[{item['title']} - {item['company_name']}]({item['apply_link']})\n"
|
||||
else:
|
||||
|
|
|
@ -44,25 +44,25 @@ class SearchAPI:
|
|||
@staticmethod
|
||||
def _process_response(res: dict, type: str) -> str:
|
||||
"""Process response from SearchAPI."""
|
||||
if "error" in res.keys():
|
||||
if "error" in res:
|
||||
raise ValueError(f"Got error from SearchApi: {res['error']}")
|
||||
|
||||
toret = ""
|
||||
if type == "text":
|
||||
if "organic_results" in res.keys() and "snippet" in res["organic_results"][0].keys():
|
||||
if "organic_results" in res and "snippet" in res["organic_results"][0]:
|
||||
for item in res["organic_results"]:
|
||||
toret += "content: " + item["snippet"] + "\n" + "link: " + item["link"] + "\n"
|
||||
if "top_stories" in res.keys() and "title" in res["top_stories"][0].keys():
|
||||
if "top_stories" in res and "title" in res["top_stories"][0]:
|
||||
for item in res["top_stories"]:
|
||||
toret += "title: " + item["title"] + "\n" + "link: " + item["link"] + "\n"
|
||||
if toret == "":
|
||||
toret = "No good search result found"
|
||||
|
||||
elif type == "link":
|
||||
if "organic_results" in res.keys() and "title" in res["organic_results"][0].keys():
|
||||
if "organic_results" in res and "title" in res["organic_results"][0]:
|
||||
for item in res["organic_results"]:
|
||||
toret += f"[{item['title']}]({item['link']})\n"
|
||||
elif "top_stories" in res.keys() and "title" in res["top_stories"][0].keys():
|
||||
elif "top_stories" in res and "title" in res["top_stories"][0]:
|
||||
for item in res["top_stories"]:
|
||||
toret += f"[{item['title']}]({item['link']})\n"
|
||||
else:
|
||||
|
|
|
@ -44,11 +44,11 @@ class SearchAPI:
|
|||
@staticmethod
|
||||
def _process_response(res: dict) -> str:
|
||||
"""Process response from SearchAPI."""
|
||||
if "error" in res.keys():
|
||||
if "error" in res:
|
||||
raise ValueError(f"Got error from SearchApi: {res['error']}")
|
||||
|
||||
toret = ""
|
||||
if "transcripts" in res.keys() and "text" in res["transcripts"][0].keys():
|
||||
if "transcripts" in res and "text" in res["transcripts"][0]:
|
||||
for item in res["transcripts"]:
|
||||
toret += item["text"] + " "
|
||||
if toret == "":
|
||||
|
|
|
@ -35,7 +35,7 @@ class StableDiffusionTool(BuiltinTool, BaseStabilityAuthorization):
|
|||
if model in ["sd3", "sd3-turbo"]:
|
||||
payload["model"] = tool_parameters.get("model")
|
||||
|
||||
if not model == "sd3-turbo":
|
||||
if model != "sd3-turbo":
|
||||
payload["negative_prompt"] = tool_parameters.get("negative_prompt", "")
|
||||
|
||||
response = post(
|
||||
|
|
|
@ -206,8 +206,7 @@ class StableDiffusionTool(BuiltinTool):
|
|||
|
||||
# Convert image to RGB and save as PNG
|
||||
try:
|
||||
with Image.open(io.BytesIO(image_binary)) as image:
|
||||
with io.BytesIO() as buffer:
|
||||
with Image.open(io.BytesIO(image_binary)) as image, io.BytesIO() as buffer:
|
||||
image.convert("RGB").save(buffer, format="PNG")
|
||||
image_binary = buffer.getvalue()
|
||||
except Exception as e:
|
||||
|
|
|
@ -27,7 +27,7 @@ class WikipediaAPIWrapper:
|
|||
self.doc_content_chars_max = doc_content_chars_max
|
||||
|
||||
def run(self, query: str, lang: str = "") -> str:
|
||||
if lang in wikipedia.languages().keys():
|
||||
if lang in wikipedia.languages():
|
||||
self.lang = lang
|
||||
|
||||
wikipedia.set_lang(self.lang)
|
||||
|
|
|
@ -19,9 +19,7 @@ class ToolFileMessageTransformer:
|
|||
result = []
|
||||
|
||||
for message in messages:
|
||||
if message.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
result.append(message)
|
||||
elif message.type == ToolInvokeMessage.MessageType.LINK:
|
||||
if message.type == ToolInvokeMessage.MessageType.TEXT or message.type == ToolInvokeMessage.MessageType.LINK:
|
||||
result.append(message)
|
||||
elif message.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
# try to download image
|
||||
|
|
|
@ -224,9 +224,7 @@ class Graph(BaseModel):
|
|||
"""
|
||||
leaf_node_ids = []
|
||||
for node_id in self.node_ids:
|
||||
if node_id not in self.edge_mapping:
|
||||
leaf_node_ids.append(node_id)
|
||||
elif (
|
||||
if node_id not in self.edge_mapping or (
|
||||
len(self.edge_mapping[node_id]) == 1
|
||||
and self.edge_mapping[node_id][0].target_node_id == self.root_node_id
|
||||
):
|
||||
|
|
|
@ -24,7 +24,7 @@ class AnswerStreamGeneratorRouter:
|
|||
# parse stream output node value selectors of answer nodes
|
||||
answer_generate_route: dict[str, list[GenerateRouteChunk]] = {}
|
||||
for answer_node_id, node_config in node_id_config_mapping.items():
|
||||
if not node_config.get("data", {}).get("type") == NodeType.ANSWER.value:
|
||||
if node_config.get("data", {}).get("type") != NodeType.ANSWER.value:
|
||||
continue
|
||||
|
||||
# get generate route for stream output
|
||||
|
|
|
@ -17,7 +17,7 @@ class EndStreamGeneratorRouter:
|
|||
# parse stream output node value selector of end nodes
|
||||
end_stream_variable_selectors_mapping: dict[str, list[list[str]]] = {}
|
||||
for end_node_id, node_config in node_id_config_mapping.items():
|
||||
if not node_config.get("data", {}).get("type") == NodeType.END.value:
|
||||
if node_config.get("data", {}).get("type") != NodeType.END.value:
|
||||
continue
|
||||
|
||||
# skip end node in parallel
|
||||
|
|
|
@ -20,7 +20,7 @@ class ToolEntity(BaseModel):
|
|||
if not isinstance(value, dict):
|
||||
raise ValueError("tool_configurations must be a dictionary")
|
||||
|
||||
for key in values.data.get("tool_configurations", {}).keys():
|
||||
for key in values.data.get("tool_configurations", {}):
|
||||
value = values.data.get("tool_configurations", {}).get(key)
|
||||
if not isinstance(value, str | int | float | bool):
|
||||
raise ValueError(f"{key} must be a string")
|
||||
|
|
|
@ -17,14 +17,12 @@ select = [
|
|||
"F", # pyflakes rules
|
||||
"I", # isort rules
|
||||
"N", # pep8-naming
|
||||
"UP", # pyupgrade rules
|
||||
"RUF019", # unnecessary-key-check
|
||||
"RUF100", # unused-noqa
|
||||
"RUF101", # redirected-noqa
|
||||
"S506", # unsafe-yaml-load
|
||||
"SIM116", # if-else-block-instead-of-dict-lookup
|
||||
"SIM401", # if-else-block-instead-of-dict-get
|
||||
"SIM910", # dict-get-with-none-default
|
||||
"SIM", # flake8-simplify rules
|
||||
"UP", # pyupgrade rules
|
||||
"W191", # tab-indentation
|
||||
"W605", # invalid-escape-sequence
|
||||
]
|
||||
|
@ -50,6 +48,15 @@ ignore = [
|
|||
"B905", # zip-without-explicit-strict
|
||||
"N806", # non-lowercase-variable-in-function
|
||||
"N815", # mixed-case-variable-in-class-scope
|
||||
"SIM102", # collapsible-if
|
||||
"SIM103", # needless-bool
|
||||
"SIM105", # suppressible-exception
|
||||
"SIM107", # return-in-try-except-finally
|
||||
"SIM108", # if-else-block-instead-of-if-exp
|
||||
"SIM113", # eumerate-for-loop
|
||||
"SIM117", # multiple-with-statements
|
||||
"SIM210", # if-expr-with-true-false
|
||||
"SIM300", # yoda-conditions
|
||||
]
|
||||
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
|
|
|
@ -56,9 +56,7 @@ class FileService:
|
|||
if etl_type == "Unstructured"
|
||||
else ALLOWED_EXTENSIONS + IMAGE_EXTENSIONS
|
||||
)
|
||||
if extension.lower() not in allowed_extensions:
|
||||
raise UnsupportedFileTypeError()
|
||||
elif only_image and extension.lower() not in IMAGE_EXTENSIONS:
|
||||
if extension.lower() not in allowed_extensions or only_image and extension.lower() not in IMAGE_EXTENSIONS:
|
||||
raise UnsupportedFileTypeError()
|
||||
|
||||
# read file content
|
||||
|
|
|
@ -54,7 +54,7 @@ class OpsService:
|
|||
:param tracing_config: tracing config
|
||||
:return:
|
||||
"""
|
||||
if tracing_provider not in provider_config_map.keys() and tracing_provider:
|
||||
if tracing_provider not in provider_config_map and tracing_provider:
|
||||
return {"error": f"Invalid tracing provider: {tracing_provider}"}
|
||||
|
||||
config_class, other_keys = (
|
||||
|
@ -113,7 +113,7 @@ class OpsService:
|
|||
:param tracing_config: tracing config
|
||||
:return:
|
||||
"""
|
||||
if tracing_provider not in provider_config_map.keys():
|
||||
if tracing_provider not in provider_config_map:
|
||||
raise ValueError(f"Invalid tracing provider: {tracing_provider}")
|
||||
|
||||
# check if trace config already exists
|
||||
|
|
Loading…
Reference in New Issue
Block a user