add qa thread control (#677)

This commit is contained in:
Jyong 2023-07-29 17:49:18 +08:00 committed by GitHub
parent 626c78a690
commit 174ebb51db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -494,6 +494,7 @@ class IndexingRunner:
Split the text documents into nodes.
"""
all_documents = []
all_qa_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
@ -502,58 +503,56 @@ class IndexingRunner:
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document_node in documents:
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
split_documents.append(document_node)
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
llm: StreamableOpenAI = LLMBuilder.to_llm(
tenant_id=tenant_id,
model_name='gpt-3.5-turbo',
max_tokens=2000
)
for i in range(0, len(documents), 10):
for i in range(0, len(all_documents), 10):
threads = []
sub_documents = documents[i:i + 10]
sub_documents = all_documents[i:i + 10]
for doc in sub_documents:
document_format_thread = threading.Thread(target=self.format_document, kwargs={
'llm': llm, 'document_node': doc, 'split_documents': split_documents,
'document_form': document_form})
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
'llm': llm, 'document_node': doc, 'all_qa_documents': all_qa_documents})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
all_documents.extend(split_documents)
return all_qa_documents
return all_documents
def format_document(self, llm: StreamableOpenAI, document_node, split_documents, document_form: str):
def format_qa_document(self, llm: StreamableOpenAI, document_node, all_qa_documents):
format_documents = []
if document_node.page_content is None or not document_node.page_content.strip():
return format_documents
if document_form == 'text_model':
# text model document
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
return
try:
# qa model document
response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.error(str(e))
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
format_documents.append(document_node)
elif document_form == 'qa_model':
try:
# qa model document
response = LLMGenerator.generate_qa_document_sync(llm, document_node.page_content)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.error(str(e))
split_documents.extend(format_documents)
all_qa_documents.extend(format_documents)
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,