add tidb on qdrant type (#9831)

Co-authored-by: Zhaofeng Miao <522856232@qq.com>
This commit is contained in:
Jyong 2024-10-25 13:57:03 +08:00 committed by GitHub
parent fc2297a2ca
commit 18106a4fc6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
27 changed files with 1648 additions and 1 deletions

View File

@ -571,6 +571,11 @@ class DataSetConfig(BaseSettings):
default=False,
)
TIDB_SERVERLESS_NUMBER: PositiveInt = Field(
description="number of tidb serverless cluster",
default=500,
)
class WorkspaceConfig(BaseSettings):
"""

View File

@ -27,6 +27,7 @@ from configs.middleware.vdb.pgvectors_config import PGVectoRSConfig
from configs.middleware.vdb.qdrant_config import QdrantConfig
from configs.middleware.vdb.relyt_config import RelytConfig
from configs.middleware.vdb.tencent_vector_config import TencentVectorDBConfig
from configs.middleware.vdb.tidb_on_qdrant_config import TidbOnQdrantConfig
from configs.middleware.vdb.tidb_vector_config import TiDBVectorConfig
from configs.middleware.vdb.upstash_config import UpstashConfig
from configs.middleware.vdb.vikingdb_config import VikingDBConfig
@ -54,6 +55,11 @@ class VectorStoreConfig(BaseSettings):
default=None,
)
VECTOR_STORE_WHITELIST_ENABLE: Optional[bool] = Field(
description="Enable whitelist for vector store.",
default=False,
)
class KeywordStoreConfig(BaseSettings):
KEYWORD_STORE: str = Field(
@ -248,5 +254,6 @@ class MiddlewareConfig(
InternalTestConfig,
VikingDBConfig,
UpstashConfig,
TidbOnQdrantConfig,
):
pass

View File

@ -0,0 +1,65 @@
from typing import Optional
from pydantic import Field, NonNegativeInt, PositiveInt
from pydantic_settings import BaseSettings
class TidbOnQdrantConfig(BaseSettings):
"""
Tidb on Qdrant configs
"""
TIDB_ON_QDRANT_URL: Optional[str] = Field(
description="Tidb on Qdrant url",
default=None,
)
TIDB_ON_QDRANT_API_KEY: Optional[str] = Field(
description="Tidb on Qdrant api key",
default=None,
)
TIDB_ON_QDRANT_CLIENT_TIMEOUT: NonNegativeInt = Field(
description="Tidb on Qdrant client timeout in seconds",
default=20,
)
TIDB_ON_QDRANT_GRPC_ENABLED: bool = Field(
description="whether enable grpc support for Tidb on Qdrant connection",
default=False,
)
TIDB_ON_QDRANT_GRPC_PORT: PositiveInt = Field(
description="Tidb on Qdrant grpc port",
default=6334,
)
TIDB_PUBLIC_KEY: Optional[str] = Field(
description="Tidb account public key",
default=None,
)
TIDB_PRIVATE_KEY: Optional[str] = Field(
description="Tidb account private key",
default=None,
)
TIDB_API_URL: Optional[str] = Field(
description="Tidb API url",
default=None,
)
TIDB_IAM_API_URL: Optional[str] = Field(
description="Tidb IAM API url",
default=None,
)
TIDB_REGION: Optional[str] = Field(
description="Tidb serverless region",
default="regions/aws-us-east-1",
)
TIDB_PROJECT_ID: Optional[str] = Field(
description="Tidb project id",
default=None,
)

View File

@ -639,6 +639,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
| VectorType.TIDB_ON_QDRANT
):
return {
"retrieval_method": [

View File

@ -0,0 +1,17 @@
from typing import Optional
from pydantic import BaseModel
class ClusterEntity(BaseModel):
"""
Model Config Entity.
"""
name: str
cluster_id: str
displayName: str
region: str
spendingLimit: Optional[int] = 1000
version: str
createdBy: str

View File

@ -0,0 +1,526 @@
import json
import os
import uuid
from collections.abc import Generator, Iterable, Sequence
from itertools import islice
from typing import TYPE_CHECKING, Any, Optional, Union, cast
import qdrant_client
import requests
from flask import current_app
from pydantic import BaseModel
from qdrant_client.http import models as rest
from qdrant_client.http.models import (
FilterSelector,
HnswConfigDiff,
PayloadSchemaType,
TextIndexParams,
TextIndexType,
TokenizerType,
)
from qdrant_client.local.qdrant_local import QdrantLocal
from requests.auth import HTTPDigestAuth
from configs import dify_config
from core.rag.datasource.vdb.field import Field
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_service import TidbService
from core.rag.datasource.vdb.vector_base import BaseVector
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset, TidbAuthBinding
if TYPE_CHECKING:
from qdrant_client import grpc # noqa
from qdrant_client.conversions import common_types
from qdrant_client.http import models as rest
DictFilter = dict[str, Union[str, int, bool, dict, list]]
MetadataFilter = Union[DictFilter, common_types.Filter]
class TidbOnQdrantConfig(BaseModel):
endpoint: str
api_key: Optional[str] = None
timeout: float = 20
root_path: Optional[str] = None
grpc_port: int = 6334
prefer_grpc: bool = False
def to_qdrant_params(self):
if self.endpoint and self.endpoint.startswith("path:"):
path = self.endpoint.replace("path:", "")
if not os.path.isabs(path):
path = os.path.join(self.root_path, path)
return {"path": path}
else:
return {
"url": self.endpoint,
"api_key": self.api_key,
"timeout": self.timeout,
"verify": False,
"grpc_port": self.grpc_port,
"prefer_grpc": self.prefer_grpc,
}
class TidbConfig(BaseModel):
api_url: str
public_key: str
private_key: str
class TidbOnQdrantVector(BaseVector):
def __init__(self, collection_name: str, group_id: str, config: TidbOnQdrantConfig, distance_func: str = "Cosine"):
super().__init__(collection_name)
self._client_config = config
self._client = qdrant_client.QdrantClient(**self._client_config.to_qdrant_params())
self._distance_func = distance_func.upper()
self._group_id = group_id
def get_type(self) -> str:
return VectorType.TIDB_ON_QDRANT
def to_index_struct(self) -> dict:
return {"type": self.get_type(), "vector_store": {"class_prefix": self._collection_name}}
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
if texts:
# get embedding vector size
vector_size = len(embeddings[0])
# get collection name
collection_name = self._collection_name
# create collection
self.create_collection(collection_name, vector_size)
self.add_texts(texts, embeddings, **kwargs)
def create_collection(self, collection_name: str, vector_size: int):
lock_name = "vector_indexing_lock_{}".format(collection_name)
with redis_client.lock(lock_name, timeout=20):
collection_exist_cache_key = "vector_indexing_{}".format(self._collection_name)
if redis_client.get(collection_exist_cache_key):
return
collection_name = collection_name or uuid.uuid4().hex
all_collection_name = []
collections_response = self._client.get_collections()
collection_list = collections_response.collections
for collection in collection_list:
all_collection_name.append(collection.name)
if collection_name not in all_collection_name:
from qdrant_client.http import models as rest
vectors_config = rest.VectorParams(
size=vector_size,
distance=rest.Distance[self._distance_func],
)
hnsw_config = HnswConfigDiff(
m=0,
payload_m=16,
ef_construct=100,
full_scan_threshold=10000,
max_indexing_threads=0,
on_disk=False,
)
self._client.recreate_collection(
collection_name=collection_name,
vectors_config=vectors_config,
hnsw_config=hnsw_config,
timeout=int(self._client_config.timeout),
)
# create group_id payload index
self._client.create_payload_index(
collection_name, Field.GROUP_KEY.value, field_schema=PayloadSchemaType.KEYWORD
)
# create doc_id payload index
self._client.create_payload_index(
collection_name, Field.DOC_ID.value, field_schema=PayloadSchemaType.KEYWORD
)
# create full text index
text_index_params = TextIndexParams(
type=TextIndexType.TEXT,
tokenizer=TokenizerType.MULTILINGUAL,
min_token_len=2,
max_token_len=20,
lowercase=True,
)
self._client.create_payload_index(
collection_name, Field.CONTENT_KEY.value, field_schema=text_index_params
)
redis_client.set(collection_exist_cache_key, 1, ex=3600)
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
uuids = self._get_uuids(documents)
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
added_ids = []
for batch_ids, points in self._generate_rest_batches(texts, embeddings, metadatas, uuids, 64, self._group_id):
self._client.upsert(collection_name=self._collection_name, points=points)
added_ids.extend(batch_ids)
return added_ids
def _generate_rest_batches(
self,
texts: Iterable[str],
embeddings: list[list[float]],
metadatas: Optional[list[dict]] = None,
ids: Optional[Sequence[str]] = None,
batch_size: int = 64,
group_id: Optional[str] = None,
) -> Generator[tuple[list[str], list[rest.PointStruct]], None, None]:
from qdrant_client.http import models as rest
texts_iterator = iter(texts)
embeddings_iterator = iter(embeddings)
metadatas_iterator = iter(metadatas or [])
ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)])
while batch_texts := list(islice(texts_iterator, batch_size)):
# Take the corresponding metadata and id for each text in a batch
batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None
batch_ids = list(islice(ids_iterator, batch_size))
# Generate the embeddings for all the texts in a batch
batch_embeddings = list(islice(embeddings_iterator, batch_size))
points = [
rest.PointStruct(
id=point_id,
vector=vector,
payload=payload,
)
for point_id, vector, payload in zip(
batch_ids,
batch_embeddings,
self._build_payloads(
batch_texts,
batch_metadatas,
Field.CONTENT_KEY.value,
Field.METADATA_KEY.value,
group_id,
Field.GROUP_KEY.value,
),
)
]
yield batch_ids, points
@classmethod
def _build_payloads(
cls,
texts: Iterable[str],
metadatas: Optional[list[dict]],
content_payload_key: str,
metadata_payload_key: str,
group_id: str,
group_payload_key: str,
) -> list[dict]:
payloads = []
for i, text in enumerate(texts):
if text is None:
raise ValueError(
"At least one of the texts is None. Please remove it before "
"calling .from_texts or .add_texts on Qdrant instance."
)
metadata = metadatas[i] if metadatas is not None else None
payloads.append({content_payload_key: text, metadata_payload_key: metadata, group_payload_key: group_id})
return payloads
def delete_by_metadata_field(self, key: str, value: str):
from qdrant_client.http import models
from qdrant_client.http.exceptions import UnexpectedResponse
try:
filter = models.Filter(
must=[
models.FieldCondition(
key=f"metadata.{key}",
match=models.MatchValue(value=value),
),
],
)
self._reload_if_needed()
self._client.delete(
collection_name=self._collection_name,
points_selector=FilterSelector(filter=filter),
)
except UnexpectedResponse as e:
# Collection does not exist, so return
if e.status_code == 404:
return
# Some other error occurred, so re-raise the exception
else:
raise e
def delete(self):
from qdrant_client.http.exceptions import UnexpectedResponse
try:
self._client.delete_collection(collection_name=self._collection_name)
except UnexpectedResponse as e:
# Collection does not exist, so return
if e.status_code == 404:
return
# Some other error occurred, so re-raise the exception
else:
raise e
def delete_by_ids(self, ids: list[str]) -> None:
from qdrant_client.http import models
from qdrant_client.http.exceptions import UnexpectedResponse
for node_id in ids:
try:
filter = models.Filter(
must=[
models.FieldCondition(
key="metadata.doc_id",
match=models.MatchValue(value=node_id),
),
],
)
self._client.delete(
collection_name=self._collection_name,
points_selector=FilterSelector(filter=filter),
)
except UnexpectedResponse as e:
# Collection does not exist, so return
if e.status_code == 404:
return
# Some other error occurred, so re-raise the exception
else:
raise e
def text_exists(self, id: str) -> bool:
all_collection_name = []
collections_response = self._client.get_collections()
collection_list = collections_response.collections
for collection in collection_list:
all_collection_name.append(collection.name)
if self._collection_name not in all_collection_name:
return False
response = self._client.retrieve(collection_name=self._collection_name, ids=[id])
return len(response) > 0
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
from qdrant_client.http import models
filter = models.Filter(
must=[
models.FieldCondition(
key="group_id",
match=models.MatchValue(value=self._group_id),
),
],
)
results = self._client.search(
collection_name=self._collection_name,
query_vector=query_vector,
query_filter=filter,
limit=kwargs.get("top_k", 4),
with_payload=True,
with_vectors=True,
score_threshold=kwargs.get("score_threshold", 0.0),
)
docs = []
for result in results:
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
# duplicate check score threshold
score_threshold = kwargs.get("score_threshold") or 0.0
if result.score > score_threshold:
metadata["score"] = result.score
doc = Document(
page_content=result.payload.get(Field.CONTENT_KEY.value),
metadata=metadata,
)
docs.append(doc)
# Sort the documents by score in descending order
docs = sorted(docs, key=lambda x: x.metadata["score"], reverse=True)
return docs
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
"""Return docs most similar by bm25.
Returns:
List of documents most similar to the query text and distance for each.
"""
from qdrant_client.http import models
scroll_filter = models.Filter(
must=[
models.FieldCondition(
key="page_content",
match=models.MatchText(text=query),
)
]
)
response = self._client.scroll(
collection_name=self._collection_name,
scroll_filter=scroll_filter,
limit=kwargs.get("top_k", 2),
with_payload=True,
with_vectors=True,
)
results = response[0]
documents = []
for result in results:
if result:
document = self._document_from_scored_point(result, Field.CONTENT_KEY.value, Field.METADATA_KEY.value)
document.metadata["vector"] = result.vector
documents.append(document)
return documents
def _reload_if_needed(self):
if isinstance(self._client, QdrantLocal):
self._client = cast(QdrantLocal, self._client)
self._client._load()
@classmethod
def _document_from_scored_point(
cls,
scored_point: Any,
content_payload_key: str,
metadata_payload_key: str,
) -> Document:
return Document(
page_content=scored_point.payload.get(content_payload_key),
metadata=scored_point.payload.get(metadata_payload_key) or {},
)
class TidbOnQdrantVectorFactory(AbstractVectorFactory):
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> TidbOnQdrantVector:
tidb_auth_binding = (
db.session.query(TidbAuthBinding).filter(TidbAuthBinding.tenant_id == dataset.tenant_id).one_or_none()
)
if not tidb_auth_binding:
idle_tidb_auth_binding = (
db.session.query(TidbAuthBinding)
.filter(TidbAuthBinding.active == False, TidbAuthBinding.status == "ACTIVE")
.limit(1)
.one_or_none()
)
if idle_tidb_auth_binding:
idle_tidb_auth_binding.active = True
idle_tidb_auth_binding.tenant_id = dataset.tenant_id
db.session.commit()
TIDB_ON_QDRANT_API_KEY = f"{idle_tidb_auth_binding.account}:{idle_tidb_auth_binding.password}"
else:
with redis_client.lock("create_tidb_serverless_cluster_lock", timeout=900):
tidb_auth_binding = (
db.session.query(TidbAuthBinding)
.filter(TidbAuthBinding.tenant_id == dataset.tenant_id)
.one_or_none()
)
if tidb_auth_binding:
TIDB_ON_QDRANT_API_KEY = f"{tidb_auth_binding.account}:{tidb_auth_binding.password}"
else:
new_cluster = TidbService.create_tidb_serverless_cluster(
dify_config.TIDB_PROJECT_ID,
dify_config.TIDB_API_URL,
dify_config.TIDB_IAM_API_URL,
dify_config.TIDB_PUBLIC_KEY,
dify_config.TIDB_PRIVATE_KEY,
dify_config.TIDB_REGION,
)
new_tidb_auth_binding = TidbAuthBinding(
cluster_id=new_cluster["cluster_id"],
cluster_name=new_cluster["cluster_name"],
account=new_cluster["account"],
password=new_cluster["password"],
tenant_id=dataset.tenant_id,
active=True,
status="ACTIVE",
)
db.session.add(new_tidb_auth_binding)
db.session.commit()
TIDB_ON_QDRANT_API_KEY = f"{new_tidb_auth_binding.account}:{new_tidb_auth_binding.password}"
else:
TIDB_ON_QDRANT_API_KEY = f"{tidb_auth_binding.account}:{tidb_auth_binding.password}"
if dataset.index_struct_dict:
class_prefix: str = dataset.index_struct_dict["vector_store"]["class_prefix"]
collection_name = class_prefix
else:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
dataset.index_struct = json.dumps(self.gen_index_struct_dict(VectorType.TIDB_ON_QDRANT, collection_name))
config = current_app.config
return TidbOnQdrantVector(
collection_name=collection_name,
group_id=dataset.id,
config=TidbOnQdrantConfig(
endpoint=dify_config.TIDB_ON_QDRANT_URL,
api_key=TIDB_ON_QDRANT_API_KEY,
root_path=config.root_path,
timeout=dify_config.TIDB_ON_QDRANT_CLIENT_TIMEOUT,
grpc_port=dify_config.TIDB_ON_QDRANT_GRPC_PORT,
prefer_grpc=dify_config.TIDB_ON_QDRANT_GRPC_ENABLED,
),
)
def create_tidb_serverless_cluster(self, tidb_config: TidbConfig, display_name: str, region: str):
"""
Creates a new TiDB Serverless cluster.
:param tidb_config: The configuration for the TiDB Cloud API.
:param display_name: The user-friendly display name of the cluster (required).
:param region: The region where the cluster will be created (required).
:return: The response from the API.
"""
region_object = {
"name": region,
}
labels = {
"tidb.cloud/project": "1372813089454548012",
}
cluster_data = {"displayName": display_name, "region": region_object, "labels": labels}
response = requests.post(
f"{tidb_config.api_url}/clusters",
json=cluster_data,
auth=HTTPDigestAuth(tidb_config.public_key, tidb_config.private_key),
)
if response.status_code == 200:
return response.json()
else:
response.raise_for_status()
def change_tidb_serverless_root_password(self, tidb_config: TidbConfig, cluster_id: str, new_password: str):
"""
Changes the root password of a specific TiDB Serverless cluster.
:param tidb_config: The configuration for the TiDB Cloud API.
:param cluster_id: The ID of the cluster for which the password is to be changed (required).
:param new_password: The new password for the root user (required).
:return: The response from the API.
"""
body = {"password": new_password}
response = requests.put(
f"{tidb_config.api_url}/clusters/{cluster_id}/password",
json=body,
auth=HTTPDigestAuth(tidb_config.public_key, tidb_config.private_key),
)
if response.status_code == 200:
return response.json()
else:
response.raise_for_status()

View File

@ -0,0 +1,250 @@
import time
import uuid
import requests
from requests.auth import HTTPDigestAuth
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import TidbAuthBinding
class TidbService:
@staticmethod
def create_tidb_serverless_cluster(
project_id: str, api_url: str, iam_url: str, public_key: str, private_key: str, region: str
):
"""
Creates a new TiDB Serverless cluster.
:param project_id: The project ID of the TiDB Cloud project (required).
:param api_url: The URL of the TiDB Cloud API (required).
:param iam_url: The URL of the TiDB Cloud IAM API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param display_name: The user-friendly display name of the cluster (required).
:param region: The region where the cluster will be created (required).
:return: The response from the API.
"""
region_object = {
"name": region,
}
labels = {
"tidb.cloud/project": project_id,
}
spending_limit = {
"monthly": 100,
}
password = str(uuid.uuid4()).replace("-", "")[:16]
display_name = str(uuid.uuid4()).replace("-", "")[:16]
cluster_data = {
"displayName": display_name,
"region": region_object,
"labels": labels,
"spendingLimit": spending_limit,
"rootPassword": password,
}
response = requests.post(f"{api_url}/clusters", json=cluster_data, auth=HTTPDigestAuth(public_key, private_key))
if response.status_code == 200:
response_data = response.json()
cluster_id = response_data["clusterId"]
retry_count = 0
max_retries = 30
while retry_count < max_retries:
cluster_response = TidbService.get_tidb_serverless_cluster(api_url, public_key, private_key, cluster_id)
if cluster_response["state"] == "ACTIVE":
user_prefix = cluster_response["userPrefix"]
return {
"cluster_id": cluster_id,
"cluster_name": display_name,
"account": f"{user_prefix}.root",
"password": password,
}
time.sleep(30) # wait 30 seconds before retrying
retry_count += 1
else:
response.raise_for_status()
@staticmethod
def delete_tidb_serverless_cluster(api_url: str, public_key: str, private_key: str, cluster_id: str):
"""
Deletes a specific TiDB Serverless cluster.
:param api_url: The URL of the TiDB Cloud API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param cluster_id: The ID of the cluster to be deleted (required).
:return: The response from the API.
"""
response = requests.delete(f"{api_url}/clusters/{cluster_id}", auth=HTTPDigestAuth(public_key, private_key))
if response.status_code == 200:
return response.json()
else:
response.raise_for_status()
@staticmethod
def get_tidb_serverless_cluster(api_url: str, public_key: str, private_key: str, cluster_id: str):
"""
Deletes a specific TiDB Serverless cluster.
:param api_url: The URL of the TiDB Cloud API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param cluster_id: The ID of the cluster to be deleted (required).
:return: The response from the API.
"""
response = requests.get(f"{api_url}/clusters/{cluster_id}", auth=HTTPDigestAuth(public_key, private_key))
if response.status_code == 200:
return response.json()
else:
response.raise_for_status()
@staticmethod
def change_tidb_serverless_root_password(
api_url: str, public_key: str, private_key: str, cluster_id: str, account: str, new_password: str
):
"""
Changes the root password of a specific TiDB Serverless cluster.
:param api_url: The URL of the TiDB Cloud API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param cluster_id: The ID of the cluster for which the password is to be changed (required).+
:param account: The account for which the password is to be changed (required).
:param new_password: The new password for the root user (required).
:return: The response from the API.
"""
body = {"password": new_password, "builtinRole": "role_admin", "customRoles": []}
response = requests.patch(
f"{api_url}/clusters/{cluster_id}/sqlUsers/{account}",
json=body,
auth=HTTPDigestAuth(public_key, private_key),
)
if response.status_code == 200:
return response.json()
else:
response.raise_for_status()
@staticmethod
def batch_update_tidb_serverless_cluster_status(
tidb_serverless_list: list[TidbAuthBinding],
project_id: str,
api_url: str,
iam_url: str,
public_key: str,
private_key: str,
) -> list[dict]:
"""
Update the status of a new TiDB Serverless cluster.
:param project_id: The project ID of the TiDB Cloud project (required).
:param api_url: The URL of the TiDB Cloud API (required).
:param iam_url: The URL of the TiDB Cloud IAM API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param display_name: The user-friendly display name of the cluster (required).
:param region: The region where the cluster will be created (required).
:return: The response from the API.
"""
clusters = []
tidb_serverless_list_map = {item.cluster_id: item for item in tidb_serverless_list}
cluster_ids = [item.cluster_id for item in tidb_serverless_list]
params = {"clusterIds": cluster_ids, "view": "FULL"}
response = requests.get(
f"{api_url}/clusters:batchGet", params=params, auth=HTTPDigestAuth(public_key, private_key)
)
if response.status_code == 200:
response_data = response.json()
cluster_infos = []
for item in response_data["clusters"]:
state = item["state"]
userPrefix = item["userPrefix"]
if state == "ACTIVE" and len(userPrefix) > 0:
cluster_info = tidb_serverless_list_map[item["clusterId"]]
cluster_info.status = "ACTIVE"
cluster_info.account = f"{userPrefix}.root"
db.session.add(cluster_info)
db.session.commit()
else:
response.raise_for_status()
@staticmethod
def batch_create_tidb_serverless_cluster(
batch_size: int, project_id: str, api_url: str, iam_url: str, public_key: str, private_key: str, region: str
) -> list[dict]:
"""
Creates a new TiDB Serverless cluster.
:param project_id: The project ID of the TiDB Cloud project (required).
:param api_url: The URL of the TiDB Cloud API (required).
:param iam_url: The URL of the TiDB Cloud IAM API (required).
:param public_key: The public key for the API (required).
:param private_key: The private key for the API (required).
:param display_name: The user-friendly display name of the cluster (required).
:param region: The region where the cluster will be created (required).
:return: The response from the API.
"""
clusters = []
for _ in range(batch_size):
region_object = {
"name": region,
}
labels = {
"tidb.cloud/project": project_id,
}
spending_limit = {
"monthly": 10,
}
password = str(uuid.uuid4()).replace("-", "")[:16]
display_name = str(uuid.uuid4()).replace("-", "")
cluster_data = {
"cluster": {
"displayName": display_name,
"region": region_object,
"labels": labels,
"spendingLimit": spending_limit,
"rootPassword": password,
}
}
cache_key = f"tidb_serverless_cluster_password:{display_name}"
redis_client.setex(cache_key, 3600, password)
clusters.append(cluster_data)
request_body = {"requests": clusters}
response = requests.post(
f"{api_url}/clusters:batchCreate", json=request_body, auth=HTTPDigestAuth(public_key, private_key)
)
if response.status_code == 200:
response_data = response.json()
cluster_infos = []
for item in response_data["clusters"]:
cache_key = f"tidb_serverless_cluster_password:{item['displayName']}"
password = redis_client.get(cache_key)
if not password:
continue
cluster_info = {
"cluster_id": item["clusterId"],
"cluster_name": item["displayName"],
"account": "root",
"password": password.decode("utf-8"),
}
cluster_infos.append(cluster_info)
return cluster_infos
else:
response.raise_for_status()

View File

@ -9,8 +9,9 @@ from core.rag.datasource.vdb.vector_type import VectorType
from core.rag.embedding.cached_embedding import CacheEmbedding
from core.rag.embedding.embedding_base import Embeddings
from core.rag.models.document import Document
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import Dataset
from models.dataset import Dataset, Whitelist
class AbstractVectorFactory(ABC):
@ -35,8 +36,18 @@ class Vector:
def _init_vector(self) -> BaseVector:
vector_type = dify_config.VECTOR_STORE
if self._dataset.index_struct_dict:
vector_type = self._dataset.index_struct_dict["type"]
else:
if dify_config.VECTOR_STORE_WHITELIST_ENABLE:
whitelist = (
db.session.query(Whitelist)
.filter(Whitelist.tenant_id == self._dataset.tenant_id, Whitelist.category == "vector_db")
.one_or_none()
)
if whitelist:
vector_type = VectorType.TIDB_ON_QDRANT
if not vector_type:
raise ValueError("Vector store must be specified.")
@ -115,6 +126,10 @@ class Vector:
from core.rag.datasource.vdb.upstash.upstash_vector import UpstashVectorFactory
return UpstashVectorFactory
case VectorType.TIDB_ON_QDRANT:
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_on_qdrant_vector import TidbOnQdrantVectorFactory
return TidbOnQdrantVectorFactory
case _:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -19,3 +19,4 @@ class VectorType(str, Enum):
BAIDU = "baidu"
VIKINGDB = "vikingdb"
UPSTASH = "upstash"
TIDB_ON_QDRANT = "tidb_on_qdrant"

View File

@ -1,6 +1,7 @@
from datetime import timedelta
from celery import Celery, Task
from celery.schedules import crontab
from flask import Flask
from configs import dify_config
@ -55,6 +56,8 @@ def init_app(app: Flask) -> Celery:
imports = [
"schedule.clean_embedding_cache_task",
"schedule.clean_unused_datasets_task",
"schedule.create_tidb_serverless_task",
"schedule.update_tidb_serverless_status_task",
]
day = dify_config.CELERY_BEAT_SCHEDULER_TIME
beat_schedule = {
@ -66,6 +69,14 @@ def init_app(app: Flask) -> Celery:
"task": "schedule.clean_unused_datasets_task.clean_unused_datasets_task",
"schedule": timedelta(days=day),
},
"create_tidb_serverless_task": {
"task": "schedule.create_tidb_serverless_task.create_tidb_serverless_task",
"schedule": crontab(minute="0", hour="*"),
},
"update_tidb_serverless_status_task": {
"task": "schedule.update_tidb_serverless_status_task.update_tidb_serverless_status_task",
"schedule": crontab(minute="30", hour="*"),
},
}
celery_app.conf.update(beat_schedule=beat_schedule, imports=imports)

View File

@ -0,0 +1,51 @@
"""add-tidb-auth-binding
Revision ID: 0251a1c768cc
Revises: 63a83fcf12ba
Create Date: 2024-08-15 09:56:59.012490
"""
import sqlalchemy as sa
from alembic import op
import models as models
# revision identifiers, used by Alembic.
revision = '0251a1c768cc'
down_revision = 'bbadea11becb'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('tidb_auth_bindings',
sa.Column('id', models.types.StringUUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
sa.Column('tenant_id', models.types.StringUUID(), nullable=True),
sa.Column('cluster_id', sa.String(length=255), nullable=False),
sa.Column('cluster_name', sa.String(length=255), nullable=False),
sa.Column('active', sa.Boolean(), server_default=sa.text('false'), nullable=False),
sa.Column('status', sa.String(length=255), server_default=sa.text("'CREATING'::character varying"), nullable=False),
sa.Column('account', sa.String(length=255), nullable=False),
sa.Column('password', sa.String(length=255), nullable=False),
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
sa.PrimaryKeyConstraint('id', name='tidb_auth_bindings_pkey')
)
with op.batch_alter_table('tidb_auth_bindings', schema=None) as batch_op:
batch_op.create_index('tidb_auth_bindings_active_idx', ['active'], unique=False)
batch_op.create_index('tidb_auth_bindings_status_idx', ['status'], unique=False)
batch_op.create_index('tidb_auth_bindings_created_at_idx', ['created_at'], unique=False)
batch_op.create_index('tidb_auth_bindings_tenant_idx', ['tenant_id'], unique=False)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('tidb_auth_bindings', schema=None) as batch_op:
batch_op.drop_index('tidb_auth_bindings_tenant_idx')
batch_op.drop_index('tidb_auth_bindings_created_at_idx')
batch_op.drop_index('tidb_auth_bindings_active_idx')
batch_op.drop_index('tidb_auth_bindings_status_idx')
op.drop_table('tidb_auth_bindings')
# ### end Alembic commands ###

View File

@ -0,0 +1,42 @@
"""add_white_list
Revision ID: 43fa78bc3b7d
Revises: 0251a1c768cc
Create Date: 2024-10-22 09:59:23.713716
"""
from alembic import op
import models as models
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '43fa78bc3b7d'
down_revision = '0251a1c768cc'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('whitelists',
sa.Column('id', models.types.StringUUID(), server_default=sa.text('uuid_generate_v4()'), nullable=False),
sa.Column('tenant_id', models.types.StringUUID(), nullable=True),
sa.Column('category', sa.String(length=255), nullable=False),
sa.Column('created_at', sa.DateTime(), server_default=sa.text('CURRENT_TIMESTAMP(0)'), nullable=False),
sa.PrimaryKeyConstraint('id', name='whitelists_pkey')
)
with op.batch_alter_table('whitelists', schema=None) as batch_op:
batch_op.create_index('whitelists_tenant_idx', ['tenant_id'], unique=False)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('whitelists', schema=None) as batch_op:
batch_op.drop_index('whitelists_tenant_idx')
op.drop_table('whitelists')
# ### end Alembic commands ###

View File

@ -704,6 +704,38 @@ class DatasetCollectionBinding(db.Model):
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
class TidbAuthBinding(db.Model):
__tablename__ = "tidb_auth_bindings"
__table_args__ = (
db.PrimaryKeyConstraint("id", name="tidb_auth_bindings_pkey"),
db.Index("tidb_auth_bindings_tenant_idx", "tenant_id"),
db.Index("tidb_auth_bindings_active_idx", "active"),
db.Index("tidb_auth_bindings_created_at_idx", "created_at"),
db.Index("tidb_auth_bindings_status_idx", "status"),
)
id = db.Column(StringUUID, primary_key=True, server_default=db.text("uuid_generate_v4()"))
tenant_id = db.Column(StringUUID, nullable=True)
cluster_id = db.Column(db.String(255), nullable=False)
cluster_name = db.Column(db.String(255), nullable=False)
active = db.Column(db.Boolean, nullable=False, server_default=db.text("false"))
status = db.Column(db.String(255), nullable=False, server_default=db.text("CREATING"))
account = db.Column(db.String(255), nullable=False)
password = db.Column(db.String(255), nullable=False)
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
class Whitelist(db.Model):
__tablename__ = "whitelists"
__table_args__ = (
db.PrimaryKeyConstraint("id", name="whitelists_pkey"),
db.Index("whitelists_tenant_idx", "tenant_id"),
)
id = db.Column(StringUUID, primary_key=True, server_default=db.text("uuid_generate_v4()"))
tenant_id = db.Column(StringUUID, nullable=True)
category = db.Column(db.String(255), nullable=False)
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text("CURRENT_TIMESTAMP(0)"))
class DatasetPermission(db.Model):
__tablename__ = "dataset_permissions"
__table_args__ = (

View File

@ -0,0 +1,56 @@
import time
import click
import app
from configs import dify_config
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_service import TidbService
from extensions.ext_database import db
from models.dataset import TidbAuthBinding
@app.celery.task(queue="dataset")
def create_tidb_serverless_task():
click.echo(click.style("Start create tidb serverless task.", fg="green"))
tidb_serverless_number = dify_config.TIDB_SERVERLESS_NUMBER
start_at = time.perf_counter()
while True:
try:
# check the number of idle tidb serverless
idle_tidb_serverless_number = TidbAuthBinding.query.filter(TidbAuthBinding.active == False).count()
if idle_tidb_serverless_number >= tidb_serverless_number:
break
# create tidb serverless
iterations_per_thread = 20
create_clusters(iterations_per_thread)
except Exception as e:
click.echo(click.style(f"Error: {e}", fg="red"))
break
end_at = time.perf_counter()
click.echo(click.style("Create tidb serverless task success latency: {}".format(end_at - start_at), fg="green"))
def create_clusters(batch_size):
try:
new_clusters = TidbService.batch_create_tidb_serverless_cluster(
batch_size,
dify_config.TIDB_PROJECT_ID,
dify_config.TIDB_API_URL,
dify_config.TIDB_IAM_API_URL,
dify_config.TIDB_PUBLIC_KEY,
dify_config.TIDB_PRIVATE_KEY,
dify_config.TIDB_REGION,
)
for new_cluster in new_clusters:
tidb_auth_binding = TidbAuthBinding(
cluster_id=new_cluster["cluster_id"],
cluster_name=new_cluster["cluster_name"],
account=new_cluster["account"],
password=new_cluster["password"],
)
db.session.add(tidb_auth_binding)
db.session.commit()
except Exception as e:
click.echo(click.style(f"Error: {e}", fg="red"))

View File

@ -0,0 +1,51 @@
import time
import click
import app
from configs import dify_config
from core.rag.datasource.vdb.tidb_on_qdrant.tidb_service import TidbService
from models.dataset import TidbAuthBinding
@app.celery.task(queue="dataset")
def update_tidb_serverless_status_task():
click.echo(click.style("Update tidb serverless status task.", fg="green"))
start_at = time.perf_counter()
while True:
try:
# check the number of idle tidb serverless
tidb_serverless_list = TidbAuthBinding.query.filter(
TidbAuthBinding.active == False, TidbAuthBinding.status == "CREATING"
).all()
if len(tidb_serverless_list) == 0:
break
# update tidb serverless status
iterations_per_thread = 20
update_clusters(tidb_serverless_list)
except Exception as e:
click.echo(click.style(f"Error: {e}", fg="red"))
break
end_at = time.perf_counter()
click.echo(
click.style("Update tidb serverless status task success latency: {}".format(end_at - start_at), fg="green")
)
def update_clusters(tidb_serverless_list: list[TidbAuthBinding]):
try:
# batch 20
for i in range(0, len(tidb_serverless_list), 20):
items = tidb_serverless_list[i : i + 20]
TidbService.batch_update_tidb_serverless_cluster_status(
items,
dify_config.TIDB_PROJECT_ID,
dify_config.TIDB_API_URL,
dify_config.TIDB_IAM_API_URL,
dify_config.TIDB_PUBLIC_KEY,
dify_config.TIDB_PRIVATE_KEY,
)
except Exception as e:
click.echo(click.style(f"Error: {e}", fg="red"))

44
api/services/auth/jina.py Normal file
View File

@ -0,0 +1,44 @@
import json
import requests
from services.auth.api_key_auth_base import ApiKeyAuthBase
class JinaAuth(ApiKeyAuthBase):
def __init__(self, credentials: dict):
super().__init__(credentials)
auth_type = credentials.get("auth_type")
if auth_type != "bearer":
raise ValueError("Invalid auth type, Jina Reader auth type must be Bearer")
self.api_key = credentials.get("config").get("api_key", None)
if not self.api_key:
raise ValueError("No API key provided")
def validate_credentials(self):
headers = self._prepare_headers()
options = {
"url": "https://example.com",
}
response = self._post_request("https://r.jina.ai", options, headers)
if response.status_code == 200:
return True
else:
self._handle_error(response)
def _prepare_headers(self):
return {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_key}"}
def _post_request(self, url, data, headers):
return requests.post(url, headers=headers, json=data)
def _handle_error(self, response):
if response.status_code in {402, 409, 500}:
error_message = response.json().get("error", "Unknown error occurred")
raise Exception(f"Failed to authorize. Status code: {response.status_code}. Error: {error_message}")
else:
if response.text:
error_message = json.loads(response.text).get("error", "Unknown error occurred")
raise Exception(f"Failed to authorize. Status code: {response.status_code}. Error: {error_message}")
raise Exception(f"Unexpected error occurred while trying to authorize. Status code: {response.status_code}")

View File

@ -0,0 +1,40 @@
'use client'
import type { FC } from 'react'
import React from 'react'
import cn from '@/utils/classnames'
import Checkbox from '@/app/components/base/checkbox'
import Tooltip from '@/app/components/base/tooltip'
type Props = {
className?: string
isChecked: boolean
onChange: (isChecked: boolean) => void
label: string
labelClassName?: string
tooltip?: string
}
const CheckboxWithLabel: FC<Props> = ({
className = '',
isChecked,
onChange,
label,
labelClassName,
tooltip,
}) => {
return (
<label className={cn(className, 'flex items-center h-7 space-x-2')}>
<Checkbox checked={isChecked} onCheck={() => onChange(!isChecked)} />
<div className={cn(labelClassName, 'text-sm font-normal text-gray-800')}>{label}</div>
{tooltip && (
<Tooltip
popupContent={
<div className='w-[200px]'>{tooltip}</div>
}
triggerClassName='ml-0.5 w-4 h-4'
/>
)}
</label>
)
}
export default React.memo(CheckboxWithLabel)

View File

@ -0,0 +1,30 @@
'use client'
import type { FC } from 'react'
import React from 'react'
import cn from '@/utils/classnames'
import { AlertTriangle } from '@/app/components/base/icons/src/vender/solid/alertsAndFeedback'
type Props = {
className?: string
title: string
errorMsg?: string
}
const ErrorMessage: FC<Props> = ({
className,
title,
errorMsg,
}) => {
return (
<div className={cn(className, 'py-2 px-4 border-t border-gray-200 bg-[#FFFAEB]')}>
<div className='flex items-center h-5'>
<AlertTriangle className='mr-2 w-4 h-4 text-[#F79009]' />
<div className='text-sm font-medium text-[#DC6803]'>{title}</div>
</div>
{errorMsg && (
<div className='mt-1 pl-6 leading-[18px] text-xs font-normal text-gray-700'>{errorMsg}</div>
)}
</div>
)
}
export default React.memo(ErrorMessage)

View File

@ -0,0 +1,54 @@
'use client'
import type { FC } from 'react'
import React from 'react'
import Input from './input'
import cn from '@/utils/classnames'
import Tooltip from '@/app/components/base/tooltip'
type Props = {
className?: string
label: string
labelClassName?: string
value: string | number
onChange: (value: string | number) => void
isRequired?: boolean
placeholder?: string
isNumber?: boolean
tooltip?: string
}
const Field: FC<Props> = ({
className,
label,
labelClassName,
value,
onChange,
isRequired = false,
placeholder = '',
isNumber = false,
tooltip,
}) => {
return (
<div className={cn(className)}>
<div className='flex py-[7px]'>
<div className={cn(labelClassName, 'flex items-center h-[18px] text-[13px] font-medium text-gray-900')}>{label} </div>
{isRequired && <span className='ml-0.5 text-xs font-semibold text-[#D92D20]'>*</span>}
{tooltip && (
<Tooltip
popupContent={
<div className='w-[200px]'>{tooltip}</div>
}
triggerClassName='ml-0.5 w-4 h-4'
/>
)}
</div>
<Input
value={value}
onChange={onChange}
placeholder={placeholder}
isNumber={isNumber}
/>
</div>
)
}
export default React.memo(Field)

View File

@ -0,0 +1,58 @@
'use client'
import type { FC } from 'react'
import React, { useCallback } from 'react'
type Props = {
value: string | number
onChange: (value: string | number) => void
placeholder?: string
isNumber?: boolean
}
const MIN_VALUE = 0
const Input: FC<Props> = ({
value,
onChange,
placeholder = '',
isNumber = false,
}) => {
const handleChange = useCallback((e: React.ChangeEvent<HTMLInputElement>) => {
const value = e.target.value
if (isNumber) {
let numberValue = parseInt(value, 10) // integer only
if (isNaN(numberValue)) {
onChange('')
return
}
if (numberValue < MIN_VALUE)
numberValue = MIN_VALUE
onChange(numberValue)
return
}
onChange(value)
}, [isNumber, onChange])
const otherOption = (() => {
if (isNumber) {
return {
min: MIN_VALUE,
}
}
return {
}
})()
return (
<input
type={isNumber ? 'number' : 'text'}
{...otherOption}
value={value}
onChange={handleChange}
className='flex h-9 w-full py-1 px-2 rounded-lg text-xs leading-normal bg-gray-100 caret-primary-600 hover:bg-gray-100 focus:ring-1 focus:ring-inset focus:ring-gray-200 focus-visible:outline-none focus:bg-gray-50 placeholder:text-gray-400'
placeholder={placeholder}
/>
)
}
export default React.memo(Input)

View File

@ -0,0 +1,55 @@
'use client'
import { useBoolean } from 'ahooks'
import type { FC } from 'react'
import React, { useEffect } from 'react'
import { useTranslation } from 'react-i18next'
import cn from '@/utils/classnames'
import { Settings04 } from '@/app/components/base/icons/src/vender/line/general'
import { ChevronRight } from '@/app/components/base/icons/src/vender/line/arrows'
const I18N_PREFIX = 'datasetCreation.stepOne.website'
type Props = {
className?: string
children: React.ReactNode
controlFoldOptions?: number
}
const OptionsWrap: FC<Props> = ({
className = '',
children,
controlFoldOptions,
}) => {
const { t } = useTranslation()
const [fold, {
toggle: foldToggle,
setTrue: foldHide,
}] = useBoolean(false)
useEffect(() => {
if (controlFoldOptions)
foldHide()
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [controlFoldOptions])
return (
<div className={cn(className, !fold ? 'mb-0' : 'mb-3')}>
<div
className='flex justify-between items-center h-[26px] py-1 cursor-pointer select-none'
onClick={foldToggle}
>
<div className='flex items-center text-gray-700'>
<Settings04 className='mr-1 w-4 h-4' />
<div className='text-[13px] font-semibold text-gray-800 uppercase'>{t(`${I18N_PREFIX}.options`)}</div>
</div>
<ChevronRight className={cn(!fold && 'rotate-90', 'w-4 h-4 text-gray-500')} />
</div>
{!fold && (
<div className='mb-4'>
{children}
</div>
)}
</div>
)
}
export default React.memo(OptionsWrap)

View File

@ -0,0 +1,48 @@
'use client'
import type { FC } from 'react'
import React, { useCallback, useState } from 'react'
import { useTranslation } from 'react-i18next'
import Input from './input'
import Button from '@/app/components/base/button'
const I18N_PREFIX = 'datasetCreation.stepOne.website'
type Props = {
isRunning: boolean
onRun: (url: string) => void
}
const UrlInput: FC<Props> = ({
isRunning,
onRun,
}) => {
const { t } = useTranslation()
const [url, setUrl] = useState('')
const handleUrlChange = useCallback((url: string | number) => {
setUrl(url as string)
}, [])
const handleOnRun = useCallback(() => {
if (isRunning)
return
onRun(url)
}, [isRunning, onRun, url])
return (
<div className='flex items-center justify-between'>
<Input
value={url}
onChange={handleUrlChange}
placeholder='https://docs.dify.ai'
/>
<Button
variant='primary'
onClick={handleOnRun}
className='ml-2'
loading={isRunning}
>
{!isRunning ? t(`${I18N_PREFIX}.run`) : ''}
</Button>
</div>
)
}
export default React.memo(UrlInput)

View File

@ -0,0 +1,40 @@
'use client'
import type { FC } from 'react'
import React, { useCallback } from 'react'
import { useTranslation } from 'react-i18next'
import cn from '@/utils/classnames'
import type { CrawlResultItem as CrawlResultItemType } from '@/models/datasets'
import Checkbox from '@/app/components/base/checkbox'
type Props = {
payload: CrawlResultItemType
isChecked: boolean
isPreview: boolean
onCheckChange: (checked: boolean) => void
onPreview: () => void
}
const CrawledResultItem: FC<Props> = ({
isPreview,
payload,
isChecked,
onCheckChange,
onPreview,
}) => {
const { t } = useTranslation()
const handleCheckChange = useCallback(() => {
onCheckChange(!isChecked)
}, [isChecked, onCheckChange])
return (
<div className={cn(isPreview ? 'border-[#D1E0FF] bg-primary-50 shadow-xs' : 'group hover:bg-gray-100', 'rounded-md px-2 py-[5px] cursor-pointer border border-transparent')}>
<div className='flex items-center h-5'>
<Checkbox className='group-hover:border-2 group-hover:border-primary-600 mr-2 shrink-0' checked={isChecked} onCheck={handleCheckChange} />
<div className='grow w-0 truncate text-sm font-medium text-gray-700' title={payload.title}>{payload.title}</div>
<div onClick={onPreview} className='hidden group-hover:flex items-center h-6 px-2 text-xs rounded-md font-medium text-gray-500 uppercase hover:bg-gray-50'>{t('datasetCreation.stepOne.website.preview')}</div>
</div>
<div className='mt-0.5 truncate pl-6 leading-[18px] text-xs font-normal text-gray-500' title={payload.source_url}>{payload.source_url}</div>
</div>
)
}
export default React.memo(CrawledResultItem)

View File

@ -0,0 +1,87 @@
'use client'
import type { FC } from 'react'
import React, { useCallback } from 'react'
import { useTranslation } from 'react-i18next'
import CheckboxWithLabel from './base/checkbox-with-label'
import CrawledResultItem from './crawled-result-item'
import cn from '@/utils/classnames'
import type { CrawlResultItem } from '@/models/datasets'
const I18N_PREFIX = 'datasetCreation.stepOne.website'
type Props = {
className?: string
list: CrawlResultItem[]
checkedList: CrawlResultItem[]
onSelectedChange: (selected: CrawlResultItem[]) => void
onPreview: (payload: CrawlResultItem) => void
usedTime: number
}
const CrawledResult: FC<Props> = ({
className = '',
list,
checkedList,
onSelectedChange,
onPreview,
usedTime,
}) => {
const { t } = useTranslation()
const isCheckAll = checkedList.length === list.length
const handleCheckedAll = useCallback(() => {
if (!isCheckAll)
onSelectedChange(list)
else
onSelectedChange([])
}, [isCheckAll, list, onSelectedChange])
const handleItemCheckChange = useCallback((item: CrawlResultItem) => {
return (checked: boolean) => {
if (checked)
onSelectedChange([...checkedList, item])
else
onSelectedChange(checkedList.filter(checkedItem => checkedItem.source_url !== item.source_url))
}
}, [checkedList, onSelectedChange])
const [previewIndex, setPreviewIndex] = React.useState<number>(-1)
const handlePreview = useCallback((index: number) => {
return () => {
setPreviewIndex(index)
onPreview(list[index])
}
}, [list, onPreview])
return (
<div className={cn(className, 'border-t border-gray-200')}>
<div className='flex items-center justify-between h-[34px] px-4 bg-gray-50 shadow-xs border-b-[0.5px] border-black/8 text-xs font-normal text-gray-700'>
<CheckboxWithLabel
isChecked={isCheckAll}
onChange={handleCheckedAll} label={isCheckAll ? t(`${I18N_PREFIX}.resetAll`) : t(`${I18N_PREFIX}.selectAll`)}
labelClassName='!font-medium'
/>
<div>{t(`${I18N_PREFIX}.scrapTimeInfo`, {
total: list.length,
time: usedTime.toFixed(1),
})}</div>
</div>
<div className='p-2'>
{list.map((item, index) => (
<CrawledResultItem
key={item.source_url}
isPreview={index === previewIndex}
onPreview={handlePreview(index)}
payload={item}
isChecked={checkedList.some(checkedItem => checkedItem.source_url === item.source_url)}
onCheckChange={handleItemCheckChange(item)}
/>
))}
</div>
</div>
)
}
export default React.memo(CrawledResult)

View File

@ -0,0 +1,37 @@
'use client'
import type { FC } from 'react'
import React from 'react'
import { useTranslation } from 'react-i18next'
import cn from '@/utils/classnames'
import { RowStruct } from '@/app/components/base/icons/src/public/other'
type Props = {
className?: string
crawledNum: number
totalNum: number
}
const Crawling: FC<Props> = ({
className = '',
crawledNum,
totalNum,
}) => {
const { t } = useTranslation()
return (
<div className={cn(className, 'border-t border-gray-200')}>
<div className='flex items-center h-[34px] px-4 bg-gray-50 shadow-xs border-b-[0.5px] border-black/8 text-xs font-normal text-gray-700'>
{t('datasetCreation.stepOne.website.totalPageScraped')} {crawledNum}/{totalNum}
</div>
<div className='p-2'>
{['', '', '', ''].map((item, index) => (
<div className='py-[5px]' key={index}>
<RowStruct />
</div>
))}
</div>
</div>
)
}
export default React.memo(Crawling)

View File

@ -0,0 +1,24 @@
import type { CrawlResultItem } from '@/models/datasets'
const result: CrawlResultItem[] = [
{
title: 'Start the frontend Docker container separately',
markdown: 'Markdown 1',
description: 'Description 1',
source_url: 'https://example.com/1',
},
{
title: 'Advanced Tool Integration',
markdown: 'Markdown 2',
description: 'Description 2',
source_url: 'https://example.com/2',
},
{
title: 'Local Source Code Start | English | Dify',
markdown: 'Markdown 3',
description: 'Description 3',
source_url: 'https://example.com/3',
},
]
export default result