feat: openai_api_compatible support config stream_mode_delimiter (#2190)

Co-authored-by: wanggang <wanggy01@servyou.com.cn>
Co-authored-by: Chenhe Gu <guchenhe@gmail.com>
This commit is contained in:
geosmart 2024-01-26 00:31:59 +08:00 committed by GitHub
parent 5fc1bd026a
commit 21450b8a51
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 87 additions and 26 deletions

View File

@ -224,7 +224,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
entity.model_properties[ModelPropertyKey.MODE] = LLMMode.COMPLETION.value
else:
raise ValueError(f"Unknown completion type {credentials['completion_type']}")
return entity
# validate_credentials method has been rewritten to use the requests library for compatibility with all providers following OpenAI's API standard.
@ -343,32 +343,44 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
)
)
for chunk in response.iter_lines(decode_unicode=True, delimiter='\n\n'):
# delimiter for stream response, need unicode_escape
import codecs
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
delimiter = codecs.decode(delimiter, "unicode_escape")
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
if chunk:
decoded_chunk = chunk.strip().lstrip('data: ').lstrip()
chunk_json = None
try:
chunk_json = json.loads(decoded_chunk)
# stream ended
except json.JSONDecodeError as e:
logger.error(f"decoded_chunk error,delimiter={delimiter},decoded_chunk={decoded_chunk}")
yield create_final_llm_result_chunk(
index=chunk_index + 1,
message=AssistantPromptMessage(content=""),
finish_reason="Non-JSON encountered."
)
break
if not chunk_json or len(chunk_json['choices']) == 0:
continue
choice = chunk_json['choices'][0]
finish_reason = chunk_json['choices'][0].get('finish_reason')
chunk_index += 1
if 'delta' in choice:
delta = choice['delta']
if delta.get('content') is None or delta.get('content') == '':
continue
if finish_reason is not None:
yield create_final_llm_result_chunk(
index=chunk_index,
message=AssistantPromptMessage(content=choice.get('text', '')),
finish_reason=finish_reason
)
else:
continue
assistant_message_tool_calls = delta.get('tool_calls', None)
# assistant_message_function_call = delta.delta.function_call
@ -387,24 +399,22 @@ class OAIAPICompatLargeLanguageModel(_CommonOAI_API_Compat, LargeLanguageModel):
full_assistant_content += delta.get('content', '')
elif 'text' in choice:
if choice.get('text') is None or choice.get('text') == '':
choice_text = choice.get('text', '')
if choice_text == '':
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=choice.get('text', '')
)
full_assistant_content += choice.get('text', '')
assistant_prompt_message = AssistantPromptMessage(content=choice_text)
full_assistant_content += choice_text
else:
continue
# check payload indicator for completion
if chunk_json['choices'][0].get('finish_reason') is not None:
if finish_reason is not None:
yield create_final_llm_result_chunk(
index=chunk_index,
message=assistant_prompt_message,
finish_reason=chunk_json['choices'][0]['finish_reason']
finish_reason=finish_reason
)
else:
yield LLMResultChunk(

View File

@ -75,3 +75,12 @@ model_credential_schema:
value: llm
default: '4096'
type: text-input
- variable: stream_mode_delimiter
label:
zh_Hans: 流模式返回结果的分隔符
en_US: Delimiter for streaming results
show_on:
- variable: __model_type
value: llm
default: '\n\n'
type: text-input

View File

@ -12,6 +12,7 @@ from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAI
Using Together.ai's OpenAI-compatible API as testing endpoint
"""
def test_validate_credentials():
model = OAIAPICompatLargeLanguageModel()
@ -34,6 +35,7 @@ def test_validate_credentials():
}
)
def test_invoke_model():
model = OAIAPICompatLargeLanguageModel()
@ -65,9 +67,47 @@ def test_invoke_model():
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
def test_invoke_stream_model():
model = OAIAPICompatLargeLanguageModel()
response = model.invoke(
model='mistralai/Mixtral-8x7B-Instruct-v0.1',
credentials={
'api_key': os.environ.get('TOGETHER_API_KEY'),
'endpoint_url': 'https://api.together.xyz/v1/',
'mode': 'chat',
'stream_mode_delimiter': '\\n\\n'
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Who are you?'
)
],
model_parameters={
'temperature': 1.0,
'top_k': 2,
'top_p': 0.5,
},
stop=['How'],
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
def test_invoke_stream_model_without_delimiter():
model = OAIAPICompatLargeLanguageModel()
response = model.invoke(
model='mistralai/Mixtral-8x7B-Instruct-v0.1',
credentials={
@ -100,6 +140,7 @@ def test_invoke_stream_model():
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
# using OpenAI's ChatGPT-3.5 as testing endpoint
def test_invoke_chat_model_with_tools():
model = OAIAPICompatLargeLanguageModel()
@ -126,22 +167,22 @@ def test_invoke_chat_model_with_tools():
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location"
"location"
]
}
}
),
],
model_parameters={
@ -156,6 +197,7 @@ def test_invoke_chat_model_with_tools():
assert isinstance(result.message, AssistantPromptMessage)
assert len(result.message.tool_calls) > 0
def test_get_num_tokens():
model = OAIAPICompatLargeLanguageModel()