mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
refactor(workflow): introduce specific error handling for LLM nodes (#10221)
This commit is contained in:
parent
2adab7f71a
commit
38bca6731c
26
api/core/workflow/nodes/llm/exc.py
Normal file
26
api/core/workflow/nodes/llm/exc.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
class LLMNodeError(ValueError):
|
||||
"""Base class for LLM Node errors."""
|
||||
|
||||
|
||||
class VariableNotFoundError(LLMNodeError):
|
||||
"""Raised when a required variable is not found."""
|
||||
|
||||
|
||||
class InvalidContextStructureError(LLMNodeError):
|
||||
"""Raised when the context structure is invalid."""
|
||||
|
||||
|
||||
class InvalidVariableTypeError(LLMNodeError):
|
||||
"""Raised when the variable type is invalid."""
|
||||
|
||||
|
||||
class ModelNotExistError(LLMNodeError):
|
||||
"""Raised when the specified model does not exist."""
|
||||
|
||||
|
||||
class LLMModeRequiredError(LLMNodeError):
|
||||
"""Raised when LLM mode is required but not provided."""
|
||||
|
||||
|
||||
class NoPromptFoundError(LLMNodeError):
|
||||
"""Raised when no prompt is found in the LLM configuration."""
|
|
@ -56,6 +56,15 @@ from .entities import (
|
|||
LLMNodeData,
|
||||
ModelConfig,
|
||||
)
|
||||
from .exc import (
|
||||
InvalidContextStructureError,
|
||||
InvalidVariableTypeError,
|
||||
LLMModeRequiredError,
|
||||
LLMNodeError,
|
||||
ModelNotExistError,
|
||||
NoPromptFoundError,
|
||||
VariableNotFoundError,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.file.models import File
|
||||
|
@ -115,7 +124,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
if self.node_data.memory:
|
||||
query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
|
||||
if not query:
|
||||
raise ValueError("Query not found")
|
||||
raise VariableNotFoundError("Query not found")
|
||||
query = query.text
|
||||
else:
|
||||
query = None
|
||||
|
@ -161,7 +170,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
usage = event.usage
|
||||
finish_reason = event.finish_reason
|
||||
break
|
||||
except Exception as e:
|
||||
except LLMNodeError as e:
|
||||
yield RunCompletedEvent(
|
||||
run_result=NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
|
@ -275,7 +284,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
variable_name = variable_selector.variable
|
||||
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
||||
if variable is None:
|
||||
raise ValueError(f"Variable {variable_selector.variable} not found")
|
||||
raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
||||
|
||||
def parse_dict(input_dict: Mapping[str, Any]) -> str:
|
||||
"""
|
||||
|
@ -325,7 +334,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
for variable_selector in variable_selectors:
|
||||
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
||||
if variable is None:
|
||||
raise ValueError(f"Variable {variable_selector.variable} not found")
|
||||
raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
||||
if isinstance(variable, NoneSegment):
|
||||
inputs[variable_selector.variable] = ""
|
||||
inputs[variable_selector.variable] = variable.to_object()
|
||||
|
@ -338,7 +347,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
for variable_selector in query_variable_selectors:
|
||||
variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
|
||||
if variable is None:
|
||||
raise ValueError(f"Variable {variable_selector.variable} not found")
|
||||
raise VariableNotFoundError(f"Variable {variable_selector.variable} not found")
|
||||
if isinstance(variable, NoneSegment):
|
||||
continue
|
||||
inputs[variable_selector.variable] = variable.to_object()
|
||||
|
@ -355,7 +364,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
return variable.value
|
||||
elif isinstance(variable, NoneSegment | ArrayAnySegment):
|
||||
return []
|
||||
raise ValueError(f"Invalid variable type: {type(variable)}")
|
||||
raise InvalidVariableTypeError(f"Invalid variable type: {type(variable)}")
|
||||
|
||||
def _fetch_context(self, node_data: LLMNodeData):
|
||||
if not node_data.context.enabled:
|
||||
|
@ -376,7 +385,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
context_str += item + "\n"
|
||||
else:
|
||||
if "content" not in item:
|
||||
raise ValueError(f"Invalid context structure: {item}")
|
||||
raise InvalidContextStructureError(f"Invalid context structure: {item}")
|
||||
|
||||
context_str += item["content"] + "\n"
|
||||
|
||||
|
@ -441,7 +450,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
)
|
||||
|
||||
if provider_model is None:
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
raise ModelNotExistError(f"Model {model_name} not exist.")
|
||||
|
||||
if provider_model.status == ModelStatus.NO_CONFIGURE:
|
||||
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
|
||||
|
@ -460,12 +469,12 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
# get model mode
|
||||
model_mode = node_data_model.mode
|
||||
if not model_mode:
|
||||
raise ValueError("LLM mode is required.")
|
||||
raise LLMModeRequiredError("LLM mode is required.")
|
||||
|
||||
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
|
||||
|
||||
if not model_schema:
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
raise ModelNotExistError(f"Model {model_name} not exist.")
|
||||
|
||||
return model_instance, ModelConfigWithCredentialsEntity(
|
||||
provider=provider_name,
|
||||
|
@ -564,7 +573,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
filtered_prompt_messages.append(prompt_message)
|
||||
|
||||
if not filtered_prompt_messages:
|
||||
raise ValueError(
|
||||
raise NoPromptFoundError(
|
||||
"No prompt found in the LLM configuration. "
|
||||
"Please ensure a prompt is properly configured before proceeding."
|
||||
)
|
||||
|
@ -636,7 +645,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
|||
variable_template_parser = VariableTemplateParser(template=prompt_template.text)
|
||||
variable_selectors = variable_template_parser.extract_variable_selectors()
|
||||
else:
|
||||
raise ValueError(f"Invalid prompt template type: {type(prompt_template)}")
|
||||
raise InvalidVariableTypeError(f"Invalid prompt template type: {type(prompt_template)}")
|
||||
|
||||
variable_mapping = {}
|
||||
for variable_selector in variable_selectors:
|
||||
|
|
Loading…
Reference in New Issue
Block a user