chore: refurbish Python code by applying refurb linter rules (#8296)

This commit is contained in:
Bowen Liang 2024-09-12 15:50:49 +08:00 committed by GitHub
parent c69f5b07ba
commit 40fb4d16ef
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
105 changed files with 220 additions and 276 deletions

View File

@ -60,23 +60,15 @@ class InsertExploreAppListApi(Resource):
site = app.site
if not site:
desc = args["desc"] if args["desc"] else ""
copy_right = args["copyright"] if args["copyright"] else ""
privacy_policy = args["privacy_policy"] if args["privacy_policy"] else ""
custom_disclaimer = args["custom_disclaimer"] if args["custom_disclaimer"] else ""
desc = args["desc"] or ""
copy_right = args["copyright"] or ""
privacy_policy = args["privacy_policy"] or ""
custom_disclaimer = args["custom_disclaimer"] or ""
else:
desc = site.description if site.description else args["desc"] if args["desc"] else ""
copy_right = site.copyright if site.copyright else args["copyright"] if args["copyright"] else ""
privacy_policy = (
site.privacy_policy if site.privacy_policy else args["privacy_policy"] if args["privacy_policy"] else ""
)
custom_disclaimer = (
site.custom_disclaimer
if site.custom_disclaimer
else args["custom_disclaimer"]
if args["custom_disclaimer"]
else ""
)
desc = site.description or args["desc"] or ""
copy_right = site.copyright or args["copyright"] or ""
privacy_policy = site.privacy_policy or args["privacy_policy"] or ""
custom_disclaimer = site.custom_disclaimer or args["custom_disclaimer"] or ""
recommended_app = RecommendedApp.query.filter(RecommendedApp.app_id == args["app_id"]).first()

View File

@ -99,14 +99,10 @@ class ChatMessageTextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
voice = args.get("voice") if args.get("voice") else text_to_speech.get("voice")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = (
args.get("voice")
if args.get("voice")
else app_model.app_model_config.text_to_speech_dict.get("voice")
)
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
response = AudioService.transcript_tts(app_model=app_model, text=text, message_id=message_id, voice=voice)

View File

@ -101,7 +101,7 @@ def _generate_account(provider: str, user_info: OAuthUserInfo):
if not account:
# Create account
account_name = user_info.name if user_info.name else "Dify"
account_name = user_info.name or "Dify"
account = RegisterService.register(
email=user_info.email, name=account_name, password=None, open_id=user_info.id, provider=provider
)

View File

@ -550,12 +550,7 @@ class DatasetApiBaseUrlApi(Resource):
@login_required
@account_initialization_required
def get(self):
return {
"api_base_url": (
dify_config.SERVICE_API_URL if dify_config.SERVICE_API_URL else request.host_url.rstrip("/")
)
+ "/v1"
}
return {"api_base_url": (dify_config.SERVICE_API_URL or request.host_url.rstrip("/")) + "/v1"}
class DatasetRetrievalSettingApi(Resource):

View File

@ -86,14 +86,10 @@ class ChatTextApi(InstalledAppResource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
voice = args.get("voice") if args.get("voice") else text_to_speech.get("voice")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = (
args.get("voice")
if args.get("voice")
else app_model.app_model_config.text_to_speech_dict.get("voice")
)
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
response = AudioService.transcript_tts(app_model=app_model, message_id=message_id, voice=voice, text=text)

View File

@ -327,7 +327,7 @@ class ToolApiProviderPreviousTestApi(Resource):
return ApiToolManageService.test_api_tool_preview(
current_user.current_tenant_id,
args["provider_name"] if args["provider_name"] else "",
args["provider_name"] or "",
args["tool_name"],
args["credentials"],
args["parameters"],

View File

@ -84,14 +84,10 @@ class TextApi(Resource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
voice = args.get("voice") if args.get("voice") else text_to_speech.get("voice")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = (
args.get("voice")
if args.get("voice")
else app_model.app_model_config.text_to_speech_dict.get("voice")
)
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None
response = AudioService.transcript_tts(

View File

@ -83,14 +83,10 @@ class TextApi(WebApiResource):
and app_model.workflow.features_dict
):
text_to_speech = app_model.workflow.features_dict.get("text_to_speech")
voice = args.get("voice") if args.get("voice") else text_to_speech.get("voice")
voice = args.get("voice") or text_to_speech.get("voice")
else:
try:
voice = (
args.get("voice")
if args.get("voice")
else app_model.app_model_config.text_to_speech_dict.get("voice")
)
voice = args.get("voice") or app_model.app_model_config.text_to_speech_dict.get("voice")
except Exception:
voice = None

View File

@ -256,7 +256,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] if llm_usage["usage"] else LLMUsage.empty_usage(),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),

View File

@ -298,7 +298,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=final_answer),
usage=llm_usage["usage"] if llm_usage["usage"] else LLMUsage.empty_usage(),
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
system_fingerprint="",
)
),

View File

@ -161,7 +161,7 @@ class AppRunner:
app_mode=AppMode.value_of(app_record.mode),
prompt_template_entity=prompt_template_entity,
inputs=inputs,
query=query if query else "",
query=query or "",
files=files,
context=context,
memory=memory,
@ -189,7 +189,7 @@ class AppRunner:
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs=inputs,
query=query if query else "",
query=query or "",
files=files,
context=context,
memory_config=memory_config,
@ -238,7 +238,7 @@ class AppRunner:
model=app_generate_entity.model_conf.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(content=text),
usage=usage if usage else LLMUsage.empty_usage(),
usage=usage or LLMUsage.empty_usage(),
),
),
PublishFrom.APPLICATION_MANAGER,
@ -351,7 +351,7 @@ class AppRunner:
tenant_id=tenant_id,
app_config=app_generate_entity.app_config,
inputs=inputs,
query=query if query else "",
query=query or "",
message_id=message_id,
trace_manager=app_generate_entity.trace_manager,
)

View File

@ -3,6 +3,7 @@ import importlib.util
import json
import logging
import os
from pathlib import Path
from typing import Any, Optional
from pydantic import BaseModel
@ -63,8 +64,7 @@ class Extensible:
builtin_file_path = os.path.join(subdir_path, "__builtin__")
if os.path.exists(builtin_file_path):
with open(builtin_file_path, encoding="utf-8") as f:
position = int(f.read().strip())
position = int(Path(builtin_file_path).read_text(encoding="utf-8").strip())
position_map[extension_name] = position
if (extension_name + ".py") not in file_names:

View File

@ -39,7 +39,7 @@ class TokenBufferMemory:
)
if message_limit and message_limit > 0:
message_limit = message_limit if message_limit <= 500 else 500
message_limit = min(message_limit, 500)
else:
message_limit = 500

View File

@ -449,7 +449,7 @@ if you are not sure about the structure.
model=real_model,
prompt_messages=prompt_messages,
message=prompt_message,
usage=usage if usage else LLMUsage.empty_usage(),
usage=usage or LLMUsage.empty_usage(),
system_fingerprint=system_fingerprint,
),
credentials=credentials,

View File

@ -409,7 +409,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
),
)
elif isinstance(chunk, ContentBlockDeltaEvent):
chunk_text = chunk.delta.text if chunk.delta.text else ""
chunk_text = chunk.delta.text or ""
full_assistant_content += chunk_text
# transform assistant message to prompt message

View File

@ -213,7 +213,7 @@ class AzureAIStudioLargeLanguageModel(LargeLanguageModel):
model=real_model,
prompt_messages=prompt_messages,
message=prompt_message,
usage=usage if usage else LLMUsage.empty_usage(),
usage=usage or LLMUsage.empty_usage(),
system_fingerprint=system_fingerprint,
),
credentials=credentials,

View File

@ -225,7 +225,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
continue
# transform assistant message to prompt message
text = delta.text if delta.text else ""
text = delta.text or ""
assistant_prompt_message = AssistantPromptMessage(content=text)
full_text += text
@ -400,15 +400,13 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
continue
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=tool_calls
)
assistant_prompt_message = AssistantPromptMessage(content=delta.delta.content or "", tool_calls=tool_calls)
full_assistant_content += delta.delta.content if delta.delta.content else ""
full_assistant_content += delta.delta.content or ""
real_model = chunk.model
system_fingerprint = chunk.system_fingerprint
completion += delta.delta.content if delta.delta.content else ""
completion += delta.delta.content or ""
yield LLMResultChunk(
model=real_model,

View File

@ -84,7 +84,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
)
for i in range(len(sentences))
]
for index, future in enumerate(futures):
for future in futures:
yield from future.result().__enter__().iter_bytes(1024)
else:

View File

@ -331,10 +331,10 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
elif "contentBlockDelta" in chunk:
delta = chunk["contentBlockDelta"]["delta"]
if "text" in delta:
chunk_text = delta["text"] if delta["text"] else ""
chunk_text = delta["text"] or ""
full_assistant_content += chunk_text
assistant_prompt_message = AssistantPromptMessage(
content=chunk_text if chunk_text else "",
content=chunk_text or "",
)
index = chunk["contentBlockDelta"]["contentBlockIndex"]
yield LLMResultChunk(
@ -751,7 +751,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
elif model_prefix == "cohere":
output = response_body.get("generations")[0].get("text")
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, output if output else "")
completion_tokens = self.get_num_tokens(model, credentials, output or "")
else:
raise ValueError(f"Got unknown model prefix {model_prefix} when handling block response")
@ -828,7 +828,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=content_delta if content_delta else "",
content=content_delta or "",
)
index += 1

View File

@ -302,11 +302,11 @@ class ChatGLMLargeLanguageModel(LargeLanguageModel):
if delta.delta.function_call:
function_calls = [delta.delta.function_call]
assistant_message_tool_calls = self._extract_response_tool_calls(function_calls if function_calls else [])
assistant_message_tool_calls = self._extract_response_tool_calls(function_calls or [])
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=assistant_message_tool_calls
content=delta.delta.content or "", tool_calls=assistant_message_tool_calls
)
if delta.finish_reason is not None:

View File

@ -511,7 +511,7 @@ class LocalAILanguageModel(LargeLanguageModel):
delta = chunk.choices[0]
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(content=delta.text if delta.text else "", tool_calls=[])
assistant_prompt_message = AssistantPromptMessage(content=delta.text or "", tool_calls=[])
if delta.finish_reason is not None:
# temp_assistant_prompt_message is used to calculate usage
@ -578,11 +578,11 @@ class LocalAILanguageModel(LargeLanguageModel):
if delta.delta.function_call:
function_calls = [delta.delta.function_call]
assistant_message_tool_calls = self._extract_response_tool_calls(function_calls if function_calls else [])
assistant_message_tool_calls = self._extract_response_tool_calls(function_calls or [])
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=assistant_message_tool_calls
content=delta.delta.content or "", tool_calls=assistant_message_tool_calls
)
if delta.finish_reason is not None:

View File

@ -211,7 +211,7 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
usage=usage,
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)
elif message.function_call:
@ -244,7 +244,7 @@ class MinimaxLargeLanguageModel(LargeLanguageModel):
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)

View File

@ -65,7 +65,7 @@ class OllamaEmbeddingModel(TextEmbeddingModel):
inputs = []
used_tokens = 0
for i, text in enumerate(texts):
for text in texts:
# Here token count is only an approximation based on the GPT2 tokenizer
num_tokens = self._get_num_tokens_by_gpt2(text)

View File

@ -508,7 +508,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
continue
# transform assistant message to prompt message
text = delta.text if delta.text else ""
text = delta.text or ""
assistant_prompt_message = AssistantPromptMessage(content=text)
full_text += text
@ -760,11 +760,9 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
final_tool_calls.extend(tool_calls)
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=tool_calls
)
assistant_prompt_message = AssistantPromptMessage(content=delta.delta.content or "", tool_calls=tool_calls)
full_assistant_content += delta.delta.content if delta.delta.content else ""
full_assistant_content += delta.delta.content or ""
if has_finish_reason:
final_chunk = LLMResultChunk(

View File

@ -88,7 +88,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
)
for i in range(len(sentences))
]
for index, future in enumerate(futures):
for future in futures:
yield from future.result().__enter__().iter_bytes(1024)
else:

View File

@ -179,9 +179,9 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
features = []
function_calling_type = credentials.get("function_calling_type", "no_call")
if function_calling_type in ["function_call"]:
if function_calling_type == "function_call":
features.append(ModelFeature.TOOL_CALL)
elif function_calling_type in ["tool_call"]:
elif function_calling_type == "tool_call":
features.append(ModelFeature.MULTI_TOOL_CALL)
stream_function_calling = credentials.get("stream_function_calling", "supported")

View File

@ -179,7 +179,7 @@ class OpenLLMLargeLanguageModel(LargeLanguageModel):
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
usage=usage,
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)
else:
@ -189,7 +189,7 @@ class OpenLLMLargeLanguageModel(LargeLanguageModel):
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)

View File

@ -106,7 +106,7 @@ class OpenLLMGenerate:
timeout = 120
data = {
"stop": stop if stop else [],
"stop": stop or [],
"prompt": "\n".join([message.content for message in prompt_messages]),
"llm_config": default_llm_config,
}

View File

@ -214,7 +214,7 @@ class ReplicateLargeLanguageModel(_CommonReplicate, LargeLanguageModel):
index += 1
assistant_prompt_message = AssistantPromptMessage(content=output if output else "")
assistant_prompt_message = AssistantPromptMessage(content=output or "")
if index < prediction_output_length:
yield LLMResultChunk(

View File

@ -1,5 +1,6 @@
import json
import logging
import operator
from typing import Any, Optional
import boto3
@ -94,7 +95,7 @@ class SageMakerRerankModel(RerankModel):
for idx in range(len(scores)):
candidate_docs.append({"content": docs[idx], "score": scores[idx]})
sorted(candidate_docs, key=lambda x: x["score"], reverse=True)
sorted(candidate_docs, key=operator.itemgetter("score"), reverse=True)
line = 3
rerank_documents = []

View File

@ -260,7 +260,7 @@ class SageMakerText2SpeechModel(TTSModel):
for payload in payloads
]
for index, future in enumerate(futures):
for future in futures:
resp = future.result()
audio_bytes = requests.get(resp.get("s3_presign_url")).content
for i in range(0, len(audio_bytes), 1024):

View File

@ -220,7 +220,7 @@ class SparkLargeLanguageModel(LargeLanguageModel):
delta = content
assistant_prompt_message = AssistantPromptMessage(
content=delta if delta else "",
content=delta or "",
)
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)

View File

@ -1,6 +1,7 @@
import base64
import hashlib
import hmac
import operator
import time
import requests
@ -127,7 +128,7 @@ class FlashRecognizer:
return s
def _build_req_with_signature(self, secret_key, params, header):
query = sorted(params.items(), key=lambda d: d[0])
query = sorted(params.items(), key=operator.itemgetter(0))
signstr = self._format_sign_string(query)
signature = self._sign(signstr, secret_key)
header["Authorization"] = signature

View File

@ -4,6 +4,7 @@ import tempfile
import uuid
from collections.abc import Generator
from http import HTTPStatus
from pathlib import Path
from typing import Optional, Union, cast
from dashscope import Generation, MultiModalConversation, get_tokenizer
@ -454,8 +455,7 @@ class TongyiLargeLanguageModel(LargeLanguageModel):
file_path = os.path.join(temp_dir, f"{uuid.uuid4()}.{mime_type.split('/')[1]}")
with open(file_path, "wb") as image_file:
image_file.write(base64.b64decode(encoded_string))
Path(file_path).write_bytes(base64.b64decode(encoded_string))
return f"file://{file_path}"

View File

@ -368,11 +368,9 @@ class UpstageLargeLanguageModel(_CommonUpstage, LargeLanguageModel):
final_tool_calls.extend(tool_calls)
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=tool_calls
)
assistant_prompt_message = AssistantPromptMessage(content=delta.delta.content or "", tool_calls=tool_calls)
full_assistant_content += delta.delta.content if delta.delta.content else ""
full_assistant_content += delta.delta.content or ""
if has_finish_reason:
final_chunk = LLMResultChunk(

View File

@ -231,10 +231,10 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
),
)
elif isinstance(chunk, ContentBlockDeltaEvent):
chunk_text = chunk.delta.text if chunk.delta.text else ""
chunk_text = chunk.delta.text or ""
full_assistant_content += chunk_text
assistant_prompt_message = AssistantPromptMessage(
content=chunk_text if chunk_text else "",
content=chunk_text or "",
)
index = chunk.index
yield LLMResultChunk(

View File

@ -1,5 +1,6 @@
# coding : utf-8
import datetime
from itertools import starmap
import pytz
@ -48,7 +49,7 @@ class SignResult:
self.authorization = ""
def __str__(self):
return "\n".join(["{}:{}".format(*item) for item in self.__dict__.items()])
return "\n".join(list(starmap("{}:{}".format, self.__dict__.items())))
class Credentials:

View File

@ -1,5 +1,6 @@
import hashlib
import hmac
import operator
from functools import reduce
from urllib.parse import quote
@ -40,4 +41,4 @@ class Util:
if len(hv) == 1:
hv = "0" + hv
lst.append(hv)
return reduce(lambda x, y: x + y, lst)
return reduce(operator.add, lst)

View File

@ -174,9 +174,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
prompt_messages=prompt_messages,
delta=LLMResultChunkDelta(
index=index,
message=AssistantPromptMessage(
content=message["content"] if message["content"] else "", tool_calls=[]
),
message=AssistantPromptMessage(content=message["content"] or "", tool_calls=[]),
usage=usage,
finish_reason=choice.get("finish_reason"),
),
@ -208,7 +206,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=message["content"] if message["content"] else "",
content=message["content"] or "",
tool_calls=tool_calls,
),
usage=self._calc_response_usage(
@ -284,7 +282,7 @@ class VolcengineMaaSLargeLanguageModel(LargeLanguageModel):
model=model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=message.content if message.content else "",
content=message.content or "",
tool_calls=tool_calls,
),
usage=self._calc_response_usage(

View File

@ -199,7 +199,7 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
secret_key=credentials["secret_key"],
)
user = user if user else "ErnieBotDefault"
user = user or "ErnieBotDefault"
# convert prompt messages to baichuan messages
messages = [
@ -289,7 +289,7 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
usage=usage,
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)
else:
@ -299,7 +299,7 @@ class ErnieBotLargeLanguageModel(LargeLanguageModel):
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=message.content, tool_calls=[]),
finish_reason=message.stop_reason if message.stop_reason else None,
finish_reason=message.stop_reason or None,
),
)

View File

@ -85,7 +85,7 @@ class WenxinTextEmbeddingModel(TextEmbeddingModel):
api_key = credentials["api_key"]
secret_key = credentials["secret_key"]
embedding: TextEmbedding = self._create_text_embedding(api_key, secret_key)
user = user if user else "ErnieBotDefault"
user = user or "ErnieBotDefault"
context_size = self._get_context_size(model, credentials)
max_chunks = self._get_max_chunks(model, credentials)

View File

@ -589,7 +589,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
# convert tool call to assistant message tool call
tool_calls = assistant_message.tool_calls
assistant_prompt_message_tool_calls = self._extract_response_tool_calls(tool_calls if tool_calls else [])
assistant_prompt_message_tool_calls = self._extract_response_tool_calls(tool_calls or [])
function_call = assistant_message.function_call
if function_call:
assistant_prompt_message_tool_calls += [self._extract_response_function_call(function_call)]
@ -652,7 +652,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=assistant_message_tool_calls
content=delta.delta.content or "", tool_calls=assistant_message_tool_calls
)
if delta.finish_reason is not None:
@ -749,7 +749,7 @@ class XinferenceAILargeLanguageModel(LargeLanguageModel):
delta = chunk.choices[0]
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(content=delta.text if delta.text else "", tool_calls=[])
assistant_prompt_message = AssistantPromptMessage(content=delta.text or "", tool_calls=[])
if delta.finish_reason is not None:
# temp_assistant_prompt_message is used to calculate usage

View File

@ -215,7 +215,7 @@ class XinferenceText2SpeechModel(TTSModel):
for i in range(len(sentences))
]
for index, future in enumerate(futures):
for future in futures:
response = future.result()
for i in range(0, len(response), 1024):
yield response[i : i + 1024]

View File

@ -414,10 +414,10 @@ class ZhipuAILargeLanguageModel(_CommonZhipuaiAI, LargeLanguageModel):
# transform assistant message to prompt message
assistant_prompt_message = AssistantPromptMessage(
content=delta.delta.content if delta.delta.content else "", tool_calls=assistant_tool_calls
content=delta.delta.content or "", tool_calls=assistant_tool_calls
)
full_assistant_content += delta.delta.content if delta.delta.content else ""
full_assistant_content += delta.delta.content or ""
if delta.finish_reason is not None and chunk.usage is not None:
completion_tokens = chunk.usage.completion_tokens

View File

@ -30,6 +30,8 @@ def _merge_map(map1: Mapping, map2: Mapping) -> Mapping:
return {key: val for key, val in merged.items() if val is not None}
from itertools import starmap
from httpx._config import DEFAULT_TIMEOUT_CONFIG as HTTPX_DEFAULT_TIMEOUT
ZHIPUAI_DEFAULT_TIMEOUT = httpx.Timeout(timeout=300.0, connect=8.0)
@ -159,7 +161,7 @@ class HttpClient:
return [(key, str_data)]
def _make_multipartform(self, data: Mapping[object, object]) -> dict[str, object]:
items = flatten([self._object_to_formdata(k, v) for k, v in data.items()])
items = flatten(list(starmap(self._object_to_formdata, data.items())))
serialized: dict[str, object] = {}
for key, value in items:

View File

@ -65,7 +65,7 @@ class LangFuseDataTrace(BaseTraceInstance):
self.generate_name_trace(trace_info)
def workflow_trace(self, trace_info: WorkflowTraceInfo):
trace_id = trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id
trace_id = trace_info.workflow_app_log_id or trace_info.workflow_run_id
user_id = trace_info.metadata.get("user_id")
if trace_info.message_id:
trace_id = trace_info.message_id
@ -84,7 +84,7 @@ class LangFuseDataTrace(BaseTraceInstance):
)
self.add_trace(langfuse_trace_data=trace_data)
workflow_span_data = LangfuseSpan(
id=(trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id),
id=(trace_info.workflow_app_log_id or trace_info.workflow_run_id),
name=TraceTaskName.WORKFLOW_TRACE.value,
input=trace_info.workflow_run_inputs,
output=trace_info.workflow_run_outputs,
@ -93,7 +93,7 @@ class LangFuseDataTrace(BaseTraceInstance):
end_time=trace_info.end_time,
metadata=trace_info.metadata,
level=LevelEnum.DEFAULT if trace_info.error == "" else LevelEnum.ERROR,
status_message=trace_info.error if trace_info.error else "",
status_message=trace_info.error or "",
)
self.add_span(langfuse_span_data=workflow_span_data)
else:
@ -143,7 +143,7 @@ class LangFuseDataTrace(BaseTraceInstance):
else:
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
created_at = node_execution.created_at if node_execution.created_at else datetime.now()
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
@ -172,10 +172,8 @@ class LangFuseDataTrace(BaseTraceInstance):
end_time=finished_at,
metadata=metadata,
level=(LevelEnum.DEFAULT if status == "succeeded" else LevelEnum.ERROR),
status_message=trace_info.error if trace_info.error else "",
parent_observation_id=(
trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id
),
status_message=trace_info.error or "",
parent_observation_id=(trace_info.workflow_app_log_id or trace_info.workflow_run_id),
)
else:
span_data = LangfuseSpan(
@ -188,7 +186,7 @@ class LangFuseDataTrace(BaseTraceInstance):
end_time=finished_at,
metadata=metadata,
level=(LevelEnum.DEFAULT if status == "succeeded" else LevelEnum.ERROR),
status_message=trace_info.error if trace_info.error else "",
status_message=trace_info.error or "",
)
self.add_span(langfuse_span_data=span_data)
@ -212,7 +210,7 @@ class LangFuseDataTrace(BaseTraceInstance):
output=outputs,
metadata=metadata,
level=(LevelEnum.DEFAULT if status == "succeeded" else LevelEnum.ERROR),
status_message=trace_info.error if trace_info.error else "",
status_message=trace_info.error or "",
usage=generation_usage,
)
@ -277,7 +275,7 @@ class LangFuseDataTrace(BaseTraceInstance):
output=message_data.answer,
metadata=metadata,
level=(LevelEnum.DEFAULT if message_data.status != "error" else LevelEnum.ERROR),
status_message=message_data.error if message_data.error else "",
status_message=message_data.error or "",
usage=generation_usage,
)
@ -319,7 +317,7 @@ class LangFuseDataTrace(BaseTraceInstance):
end_time=trace_info.end_time,
metadata=trace_info.metadata,
level=(LevelEnum.DEFAULT if message_data.status != "error" else LevelEnum.ERROR),
status_message=message_data.error if message_data.error else "",
status_message=message_data.error or "",
usage=generation_usage,
)

View File

@ -82,7 +82,7 @@ class LangSmithDataTrace(BaseTraceInstance):
langsmith_run = LangSmithRunModel(
file_list=trace_info.file_list,
total_tokens=trace_info.total_tokens,
id=trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id,
id=trace_info.workflow_app_log_id or trace_info.workflow_run_id,
name=TraceTaskName.WORKFLOW_TRACE.value,
inputs=trace_info.workflow_run_inputs,
run_type=LangSmithRunType.tool,
@ -94,7 +94,7 @@ class LangSmithDataTrace(BaseTraceInstance):
},
error=trace_info.error,
tags=["workflow"],
parent_run_id=trace_info.message_id if trace_info.message_id else None,
parent_run_id=trace_info.message_id or None,
)
self.add_run(langsmith_run)
@ -133,7 +133,7 @@ class LangSmithDataTrace(BaseTraceInstance):
else:
inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}
outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}
created_at = node_execution.created_at if node_execution.created_at else datetime.now()
created_at = node_execution.created_at or datetime.now()
elapsed_time = node_execution.elapsed_time
finished_at = created_at + timedelta(seconds=elapsed_time)
@ -180,9 +180,7 @@ class LangSmithDataTrace(BaseTraceInstance):
extra={
"metadata": metadata,
},
parent_run_id=trace_info.workflow_app_log_id
if trace_info.workflow_app_log_id
else trace_info.workflow_run_id,
parent_run_id=trace_info.workflow_app_log_id or trace_info.workflow_run_id,
tags=["node_execution"],
)

View File

@ -354,11 +354,11 @@ class TraceTask:
workflow_run_inputs = json.loads(workflow_run.inputs) if workflow_run.inputs else {}
workflow_run_outputs = json.loads(workflow_run.outputs) if workflow_run.outputs else {}
workflow_run_version = workflow_run.version
error = workflow_run.error if workflow_run.error else ""
error = workflow_run.error or ""
total_tokens = workflow_run.total_tokens
file_list = workflow_run_inputs.get("sys.file") if workflow_run_inputs.get("sys.file") else []
file_list = workflow_run_inputs.get("sys.file") or []
query = workflow_run_inputs.get("query") or workflow_run_inputs.get("sys.query") or ""
# get workflow_app_log_id
@ -452,7 +452,7 @@ class TraceTask:
message_tokens=message_tokens,
answer_tokens=message_data.answer_tokens,
total_tokens=message_tokens + message_data.answer_tokens,
error=message_data.error if message_data.error else "",
error=message_data.error or "",
inputs=inputs,
outputs=message_data.answer,
file_list=file_list,
@ -487,7 +487,7 @@ class TraceTask:
workflow_app_log_id = str(workflow_app_log_data.id) if workflow_app_log_data else None
moderation_trace_info = ModerationTraceInfo(
message_id=workflow_app_log_id if workflow_app_log_id else message_id,
message_id=workflow_app_log_id or message_id,
inputs=inputs,
message_data=message_data.to_dict(),
flagged=moderation_result.flagged,
@ -527,7 +527,7 @@ class TraceTask:
workflow_app_log_id = str(workflow_app_log_data.id) if workflow_app_log_data else None
suggested_question_trace_info = SuggestedQuestionTraceInfo(
message_id=workflow_app_log_id if workflow_app_log_id else message_id,
message_id=workflow_app_log_id or message_id,
message_data=message_data.to_dict(),
inputs=message_data.message,
outputs=message_data.answer,
@ -569,7 +569,7 @@ class TraceTask:
dataset_retrieval_trace_info = DatasetRetrievalTraceInfo(
message_id=message_id,
inputs=message_data.query if message_data.query else message_data.inputs,
inputs=message_data.query or message_data.inputs,
documents=[doc.model_dump() for doc in documents],
start_time=timer.get("start"),
end_time=timer.get("end"),
@ -695,8 +695,7 @@ class TraceQueueManager:
self.start_timer()
def add_trace_task(self, trace_task: TraceTask):
global trace_manager_timer
global trace_manager_queue
global trace_manager_timer, trace_manager_queue
try:
if self.trace_instance:
trace_task.app_id = self.app_id

View File

@ -112,11 +112,11 @@ class SimplePromptTransform(PromptTransform):
for v in prompt_template_config["special_variable_keys"]:
# support #context#, #query# and #histories#
if v == "#context#":
variables["#context#"] = context if context else ""
variables["#context#"] = context or ""
elif v == "#query#":
variables["#query#"] = query if query else ""
variables["#query#"] = query or ""
elif v == "#histories#":
variables["#histories#"] = histories if histories else ""
variables["#histories#"] = histories or ""
prompt_template = prompt_template_config["prompt_template"]
prompt = prompt_template.format(variables)

View File

@ -34,7 +34,7 @@ class BaseKeyword(ABC):
raise NotImplementedError
def _filter_duplicate_texts(self, texts: list[Document]) -> list[Document]:
for text in texts[:]:
for text in texts.copy():
doc_id = text.metadata["doc_id"]
exists_duplicate_node = self.text_exists(doc_id)
if exists_duplicate_node:

View File

@ -239,7 +239,7 @@ class AnalyticdbVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
request = gpdb_20160503_models.QueryCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,
@ -267,7 +267,7 @@ class AnalyticdbVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
from alibabacloud_gpdb20160503 import models as gpdb_20160503_models
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
request = gpdb_20160503_models.QueryCollectionDataRequest(
dbinstance_id=self.config.instance_id,
region_id=self.config.region_id,

View File

@ -92,7 +92,7 @@ class ChromaVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
collection = self._client.get_or_create_collection(self._collection_name)
results: QueryResult = collection.query(query_embeddings=query_vector, n_results=kwargs.get("top_k", 4))
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
ids: list[str] = results["ids"][0]
documents: list[str] = results["documents"][0]

View File

@ -86,8 +86,8 @@ class ElasticSearchVector(BaseVector):
id=uuids[i],
document={
Field.CONTENT_KEY.value: documents[i].page_content,
Field.VECTOR.value: embeddings[i] if embeddings[i] else None,
Field.METADATA_KEY.value: documents[i].metadata if documents[i].metadata else {},
Field.VECTOR.value: embeddings[i] or None,
Field.METADATA_KEY.value: documents[i].metadata or {},
},
)
self._client.indices.refresh(index=self._collection_name)
@ -131,7 +131,7 @@ class ElasticSearchVector(BaseVector):
docs = []
for doc, score in docs_and_scores:
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if score > score_threshold:
doc.metadata["score"] = score
docs.append(doc)

View File

@ -141,7 +141,7 @@ class MilvusVector(BaseVector):
for result in results[0]:
metadata = result["entity"].get(Field.METADATA_KEY.value)
metadata["score"] = result["distance"]
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if result["distance"] > score_threshold:
doc = Document(page_content=result["entity"].get(Field.CONTENT_KEY.value), metadata=metadata)
docs.append(doc)

View File

@ -122,7 +122,7 @@ class MyScaleVector(BaseVector):
def _search(self, dist: str, order: SortOrder, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
score_threshold = kwargs.get("score_threshold") or 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
where_str = (
f"WHERE dist < {1 - score_threshold}"
if self._metric.upper() == "COSINE" and order == SortOrder.ASC and score_threshold > 0.0

View File

@ -170,7 +170,7 @@ class OpenSearchVector(BaseVector):
metadata = {}
metadata["score"] = hit["_score"]
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if hit["_score"] > score_threshold:
doc = Document(page_content=hit["_source"].get(Field.CONTENT_KEY.value), metadata=metadata)
docs.append(doc)

View File

@ -200,7 +200,7 @@ class OracleVector(BaseVector):
[numpy.array(query_vector)],
)
docs = []
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
for record in cur:
metadata, text, distance = record
score = 1 - distance
@ -212,7 +212,7 @@ class OracleVector(BaseVector):
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
# just not implement fetch by score_threshold now, may be later
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if len(query) > 0:
# Check which language the query is in
zh_pattern = re.compile("[\u4e00-\u9fa5]+")

View File

@ -198,7 +198,7 @@ class PGVectoRS(BaseVector):
metadata = record.meta
score = 1 - dis
metadata["score"] = score
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if score > score_threshold:
doc = Document(page_content=record.text, metadata=metadata)
docs.append(doc)

View File

@ -144,7 +144,7 @@ class PGVector(BaseVector):
(json.dumps(query_vector),),
)
docs = []
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
for record in cur:
metadata, text, distance = record
score = 1 - distance

View File

@ -339,7 +339,7 @@ class QdrantVector(BaseVector):
for result in results:
metadata = result.payload.get(Field.METADATA_KEY.value) or {}
# duplicate check score threshold
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if result.score > score_threshold:
metadata["score"] = result.score
doc = Document(

View File

@ -230,7 +230,7 @@ class RelytVector(BaseVector):
# Organize results.
docs = []
for document, score in results:
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
if 1 - score > score_threshold:
docs.append(document)
return docs

View File

@ -153,7 +153,7 @@ class TencentVector(BaseVector):
limit=kwargs.get("top_k", 4),
timeout=self._client_config.timeout,
)
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
return self._get_search_res(res, score_threshold)
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:

View File

@ -185,7 +185,7 @@ class TiDBVector(BaseVector):
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
top_k = kwargs.get("top_k", 5)
score_threshold = kwargs.get("score_threshold") if kwargs.get("score_threshold") else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
filter = kwargs.get("filter")
distance = 1 - score_threshold

View File

@ -49,7 +49,7 @@ class BaseVector(ABC):
raise NotImplementedError
def _filter_duplicate_texts(self, texts: list[Document]) -> list[Document]:
for text in texts[:]:
for text in texts.copy():
doc_id = text.metadata["doc_id"]
exists_duplicate_node = self.text_exists(doc_id)
if exists_duplicate_node:

View File

@ -153,7 +153,7 @@ class Vector:
return CacheEmbedding(embedding_model)
def _filter_duplicate_texts(self, texts: list[Document]) -> list[Document]:
for text in texts[:]:
for text in texts.copy():
doc_id = text.metadata["doc_id"]
exists_duplicate_node = self.text_exists(doc_id)
if exists_duplicate_node:

View File

@ -205,7 +205,7 @@ class WeaviateVector(BaseVector):
docs = []
for doc, score in docs_and_scores:
score_threshold = kwargs.get("score_threshold", 0.0) if kwargs.get("score_threshold", 0.0) else 0.0
score_threshold = kwargs.get("score_threshold", 0.0)
# check score threshold
if score > score_threshold:
doc.metadata["score"] = score

View File

@ -12,7 +12,7 @@ import mimetypes
from abc import ABC, abstractmethod
from collections.abc import Generator, Iterable, Mapping
from io import BufferedReader, BytesIO
from pathlib import PurePath
from pathlib import Path, PurePath
from typing import Any, Optional, Union
from pydantic import BaseModel, ConfigDict, model_validator
@ -56,8 +56,7 @@ class Blob(BaseModel):
def as_string(self) -> str:
"""Read data as a string."""
if self.data is None and self.path:
with open(str(self.path), encoding=self.encoding) as f:
return f.read()
return Path(str(self.path)).read_text(encoding=self.encoding)
elif isinstance(self.data, bytes):
return self.data.decode(self.encoding)
elif isinstance(self.data, str):
@ -72,8 +71,7 @@ class Blob(BaseModel):
elif isinstance(self.data, str):
return self.data.encode(self.encoding)
elif self.data is None and self.path:
with open(str(self.path), "rb") as f:
return f.read()
return Path(str(self.path)).read_bytes()
else:
raise ValueError(f"Unable to get bytes for blob {self}")

View File

@ -68,8 +68,7 @@ class ExtractProcessor:
suffix = "." + re.search(r"\.(\w+)$", filename).group(1)
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
with open(file_path, "wb") as file:
file.write(response.content)
Path(file_path).write_bytes(response.content)
extract_setting = ExtractSetting(datasource_type="upload_file", document_model="text_model")
if return_text:
delimiter = "\n"
@ -111,7 +110,7 @@ class ExtractProcessor:
)
elif file_extension in [".htm", ".html"]:
extractor = HtmlExtractor(file_path)
elif file_extension in [".docx"]:
elif file_extension == ".docx":
extractor = WordExtractor(file_path, upload_file.tenant_id, upload_file.created_by)
elif file_extension == ".csv":
extractor = CSVExtractor(file_path, autodetect_encoding=True)
@ -143,7 +142,7 @@ class ExtractProcessor:
extractor = MarkdownExtractor(file_path, autodetect_encoding=True)
elif file_extension in [".htm", ".html"]:
extractor = HtmlExtractor(file_path)
elif file_extension in [".docx"]:
elif file_extension == ".docx":
extractor = WordExtractor(file_path, upload_file.tenant_id, upload_file.created_by)
elif file_extension == ".csv":
extractor = CSVExtractor(file_path, autodetect_encoding=True)

View File

@ -1,6 +1,7 @@
"""Document loader helpers."""
import concurrent.futures
from pathlib import Path
from typing import NamedTuple, Optional, cast
@ -28,8 +29,7 @@ def detect_file_encodings(file_path: str, timeout: int = 5) -> list[FileEncoding
import chardet
def read_and_detect(file_path: str) -> list[dict]:
with open(file_path, "rb") as f:
rawdata = f.read()
rawdata = Path(file_path).read_bytes()
return cast(list[dict], chardet.detect_all(rawdata))
with concurrent.futures.ThreadPoolExecutor() as executor:

View File

@ -1,6 +1,7 @@
"""Abstract interface for document loader implementations."""
import re
from pathlib import Path
from typing import Optional, cast
from core.rag.extractor.extractor_base import BaseExtractor
@ -102,15 +103,13 @@ class MarkdownExtractor(BaseExtractor):
"""Parse file into tuples."""
content = ""
try:
with open(filepath, encoding=self._encoding) as f:
content = f.read()
content = Path(filepath).read_text(encoding=self._encoding)
except UnicodeDecodeError as e:
if self._autodetect_encoding:
detected_encodings = detect_file_encodings(filepath)
for encoding in detected_encodings:
try:
with open(filepath, encoding=encoding.encoding) as f:
content = f.read()
content = Path(filepath).read_text(encoding=encoding.encoding)
break
except UnicodeDecodeError:
continue

View File

@ -1,5 +1,6 @@
"""Abstract interface for document loader implementations."""
from pathlib import Path
from typing import Optional
from core.rag.extractor.extractor_base import BaseExtractor
@ -25,15 +26,13 @@ class TextExtractor(BaseExtractor):
"""Load from file path."""
text = ""
try:
with open(self._file_path, encoding=self._encoding) as f:
text = f.read()
text = Path(self._file_path).read_text(encoding=self._encoding)
except UnicodeDecodeError as e:
if self._autodetect_encoding:
detected_encodings = detect_file_encodings(self._file_path)
for encoding in detected_encodings:
try:
with open(self._file_path, encoding=encoding.encoding) as f:
text = f.read()
text = Path(self._file_path).read_text(encoding=encoding.encoding)
break
except UnicodeDecodeError:
continue

View File

@ -153,7 +153,7 @@ class WordExtractor(BaseExtractor):
if col_index >= total_cols:
break
cell_content = self._parse_cell(cell, image_map).strip()
cell_colspan = cell.grid_span if cell.grid_span else 1
cell_colspan = cell.grid_span or 1
for i in range(cell_colspan):
if col_index + i < total_cols:
row_cells[col_index + i] = cell_content if i == 0 else ""

View File

@ -256,7 +256,7 @@ class DatasetRetrieval:
# get retrieval model config
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if dataset:
retrieval_model_config = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
@ -410,7 +410,7 @@ class DatasetRetrieval:
return []
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
@ -433,9 +433,7 @@ class DatasetRetrieval:
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
@ -486,7 +484,7 @@ class DatasetRetrieval:
}
for dataset in available_datasets:
retrieval_model_config = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]

View File

@ -106,7 +106,7 @@ class ApiToolProviderController(ToolProviderController):
"human": {"en_US": tool_bundle.summary or "", "zh_Hans": tool_bundle.summary or ""},
"llm": tool_bundle.summary or "",
},
"parameters": tool_bundle.parameters if tool_bundle.parameters else [],
"parameters": tool_bundle.parameters or [],
}
)

View File

@ -1,4 +1,5 @@
import json
import operator
from typing import Any, Union
import boto3
@ -71,7 +72,7 @@ class SageMakerReRankTool(BuiltinTool):
candidate_docs[idx]["score"] = scores[idx]
line = 8
sorted_candidate_docs = sorted(candidate_docs, key=lambda x: x["score"], reverse=True)
sorted_candidate_docs = sorted(candidate_docs, key=operator.itemgetter("score"), reverse=True)
line = 9
return [self.create_json_message(res) for res in sorted_candidate_docs[: self.topk]]

View File

@ -115,7 +115,7 @@ class GetWorksheetFieldsTool(BuiltinTool):
fields.append(field)
fields_list.append(
f"|{field['id']}|{field['name']}|{field['type']}|{field['typeId']}|{field['description']}"
f"|{field['options'] if field['options'] else ''}|"
f"|{field['options'] or ''}|"
)
fields.append(

View File

@ -130,7 +130,7 @@ class GetWorksheetPivotDataTool(BuiltinTool):
# ]
rows = []
for row in data["data"]:
row_data = row["rows"] if row["rows"] else {}
row_data = row["rows"] or {}
row_data.update(row["columns"])
row_data.update(row["values"])
rows.append(row_data)

View File

@ -113,7 +113,7 @@ class ListWorksheetRecordsTool(BuiltinTool):
result_text = f"Found {result['total']} rows in worksheet \"{worksheet_name}\"."
if result["total"] > 0:
result_text += (
f" The following are {result['total'] if result['total'] < limit else limit}"
f" The following are {min(limit, result['total'])}"
f" pieces of data presented in a table format:\n\n{table_header}"
)
for row in rows:

View File

@ -37,7 +37,7 @@ class SearchAPI:
return {
"engine": "youtube_transcripts",
"video_id": video_id,
"lang": language if language else "en",
"lang": language or "en",
**{key: value for key, value in kwargs.items() if value not in [None, ""]},
}

View File

@ -160,7 +160,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
hit_callback.on_query(query, dataset.id)
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
@ -183,9 +183,7 @@ class DatasetMultiRetrieverTool(DatasetRetrieverBaseTool):
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)

View File

@ -55,7 +55,7 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
hit_callback.on_query(query, dataset.id)
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
@ -76,9 +76,7 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
else:

View File

@ -8,6 +8,7 @@ import subprocess
import tempfile
import unicodedata
from contextlib import contextmanager
from pathlib import Path
from urllib.parse import unquote
import chardet
@ -98,7 +99,7 @@ def get_url(url: str, user_agent: str = None) -> str:
authors=a["byline"],
publish_date=a["date"],
top_image="",
text=a["plain_text"] if a["plain_text"] else "",
text=a["plain_text"] or "",
)
return res
@ -117,8 +118,7 @@ def extract_using_readabilipy(html):
subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
# Read output of call to Readability.parse() from JSON file and return as Python dictionary
with open(article_json_path, encoding="utf-8") as json_file:
input_json = json.loads(json_file.read())
input_json = json.loads(Path(article_json_path).read_text(encoding="utf-8"))
# Deleting files after processing
os.unlink(article_json_path)

View File

@ -21,7 +21,7 @@ def load_yaml_file(file_path: str, ignore_error: bool = True, default_value: Any
with open(file_path, encoding="utf-8") as yaml_file:
try:
yaml_content = yaml.safe_load(yaml_file)
return yaml_content if yaml_content else default_value
return yaml_content or default_value
except Exception as e:
raise YAMLError(f"Failed to load YAML file {file_path}: {e}")
except Exception as e:

View File

@ -268,7 +268,7 @@ class Graph(BaseModel):
f"Node {graph_edge.source_node_id} is connected to the previous node, please check the graph."
)
new_route = route[:]
new_route = route.copy()
new_route.append(graph_edge.target_node_id)
cls._check_connected_to_previous_node(
route=new_route,
@ -679,8 +679,7 @@ class Graph(BaseModel):
all_routes_node_ids = set()
parallel_start_node_ids: dict[str, list[str]] = {}
for branch_node_id, node_ids in routes_node_ids.items():
for node_id in node_ids:
all_routes_node_ids.add(node_id)
all_routes_node_ids.update(node_ids)
if branch_node_id in reverse_edge_mapping:
for graph_edge in reverse_edge_mapping[branch_node_id]:

View File

@ -74,7 +74,7 @@ class CodeNode(BaseNode):
:return:
"""
if not isinstance(value, str):
if isinstance(value, type(None)):
if value is None:
return None
else:
raise ValueError(f"Output variable `{variable}` must be a string")
@ -95,7 +95,7 @@ class CodeNode(BaseNode):
:return:
"""
if not isinstance(value, int | float):
if isinstance(value, type(None)):
if value is None:
return None
else:
raise ValueError(f"Output variable `{variable}` must be a number")
@ -182,7 +182,7 @@ class CodeNode(BaseNode):
f"Output {prefix}.{output_name} is not a valid array."
f" make sure all elements are of the same type."
)
elif isinstance(output_value, type(None)):
elif output_value is None:
pass
else:
raise ValueError(f"Output {prefix}.{output_name} is not a valid type.")
@ -284,7 +284,7 @@ class CodeNode(BaseNode):
for i, value in enumerate(result[output_name]):
if not isinstance(value, dict):
if isinstance(value, type(None)):
if value is None:
pass
else:
raise ValueError(

View File

@ -79,7 +79,7 @@ class IfElseNode(BaseNode):
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=node_inputs,
process_data=process_datas,
edge_source_handle=selected_case_id if selected_case_id else "false", # Use case ID or 'default'
edge_source_handle=selected_case_id or "false", # Use case ID or 'default'
outputs=outputs,
)

View File

@ -580,7 +580,7 @@ class LLMNode(BaseNode):
prompt_messages = prompt_transform.get_prompt(
prompt_template=node_data.prompt_template,
inputs=inputs,
query=query if query else "",
query=query or "",
files=files,
context=context,
memory_config=node_data.memory,

View File

@ -250,7 +250,7 @@ class QuestionClassifierNode(LLMNode):
for class_ in classes:
category = {"category_id": class_.id, "category_name": class_.name}
categories.append(category)
instruction = node_data.instruction if node_data.instruction else ""
instruction = node_data.instruction or ""
input_text = query
memory_str = ""
if memory:

View File

@ -18,8 +18,7 @@ def handle(sender, **kwargs):
added_dataset_ids = dataset_ids
else:
old_dataset_ids = set()
for app_dataset_join in app_dataset_joins:
old_dataset_ids.add(app_dataset_join.dataset_id)
old_dataset_ids.update(app_dataset_join.dataset_id for app_dataset_join in app_dataset_joins)
added_dataset_ids = dataset_ids - old_dataset_ids
removed_dataset_ids = old_dataset_ids - dataset_ids

View File

@ -22,8 +22,7 @@ def handle(sender, **kwargs):
added_dataset_ids = dataset_ids
else:
old_dataset_ids = set()
for app_dataset_join in app_dataset_joins:
old_dataset_ids.add(app_dataset_join.dataset_id)
old_dataset_ids.update(app_dataset_join.dataset_id for app_dataset_join in app_dataset_joins)
added_dataset_ids = dataset_ids - old_dataset_ids
removed_dataset_ids = old_dataset_ids - dataset_ids

View File

@ -1,6 +1,7 @@
import os
import shutil
from collections.abc import Generator
from pathlib import Path
from flask import Flask
@ -26,8 +27,7 @@ class LocalStorage(BaseStorage):
folder = os.path.dirname(filename)
os.makedirs(folder, exist_ok=True)
with open(os.path.join(os.getcwd(), filename), "wb") as f:
f.write(data)
Path(os.path.join(os.getcwd(), filename)).write_bytes(data)
def load_once(self, filename: str) -> bytes:
if not self.folder or self.folder.endswith("/"):
@ -38,9 +38,7 @@ class LocalStorage(BaseStorage):
if not os.path.exists(filename):
raise FileNotFoundError("File not found")
with open(filename, "rb") as f:
data = f.read()
data = Path(filename).read_bytes()
return data
def load_stream(self, filename: str) -> Generator:

View File

@ -144,7 +144,7 @@ class Dataset(db.Model):
"top_k": 2,
"score_threshold_enabled": False,
}
return self.retrieval_model if self.retrieval_model else default_retrieval_model
return self.retrieval_model or default_retrieval_model
@property
def tags(self):
@ -160,7 +160,7 @@ class Dataset(db.Model):
.all()
)
return tags if tags else []
return tags or []
@staticmethod
def gen_collection_name_by_id(dataset_id: str) -> str:

View File

@ -118,7 +118,7 @@ class App(db.Model):
@property
def api_base_url(self):
return (dify_config.SERVICE_API_URL if dify_config.SERVICE_API_URL else request.host_url.rstrip("/")) + "/v1"
return (dify_config.SERVICE_API_URL or request.host_url.rstrip("/")) + "/v1"
@property
def tenant(self):
@ -207,7 +207,7 @@ class App(db.Model):
.all()
)
return tags if tags else []
return tags or []
class AppModelConfig(db.Model):
@ -908,7 +908,7 @@ class Message(db.Model):
"id": message_file.id,
"type": message_file.type,
"url": url,
"belongs_to": message_file.belongs_to if message_file.belongs_to else "user",
"belongs_to": message_file.belongs_to or "user",
}
)
@ -1212,7 +1212,7 @@ class Site(db.Model):
@property
def app_base_url(self):
return dify_config.APP_WEB_URL if dify_config.APP_WEB_URL else request.url_root.rstrip("/")
return dify_config.APP_WEB_URL or request.url_root.rstrip("/")
class ApiToken(db.Model):
@ -1488,7 +1488,7 @@ class TraceAppConfig(db.Model):
@property
def tracing_config_dict(self):
return self.tracing_config if self.tracing_config else {}
return self.tracing_config or {}
@property
def tracing_config_str(self):

View File

@ -15,6 +15,7 @@ select = [
"C4", # flake8-comprehensions
"E", # pycodestyle E rules
"F", # pyflakes rules
"FURB", # refurb rules
"I", # isort rules
"N", # pep8-naming
"RUF019", # unnecessary-key-check
@ -37,6 +38,8 @@ ignore = [
"F405", # undefined-local-with-import-star-usage
"F821", # undefined-name
"F841", # unused-variable
"FURB113", # repeated-append
"FURB152", # math-constant
"UP007", # non-pep604-annotation
"UP032", # f-string
"B005", # strip-with-multi-characters

View File

@ -544,7 +544,7 @@ class RegisterService:
"""Register account"""
try:
account = AccountService.create_account(
email=email, name=name, interface_language=language if language else languages[0], password=password
email=email, name=name, interface_language=language or languages[0], password=password
)
account.status = AccountStatus.ACTIVE.value if not status else status.value
account.initialized_at = datetime.now(timezone.utc).replace(tzinfo=None)

View File

@ -81,13 +81,11 @@ class AppDslService:
raise ValueError("Missing app in data argument")
# get app basic info
name = args.get("name") if args.get("name") else app_data.get("name")
description = args.get("description") if args.get("description") else app_data.get("description", "")
icon_type = args.get("icon_type") if args.get("icon_type") else app_data.get("icon_type")
icon = args.get("icon") if args.get("icon") else app_data.get("icon")
icon_background = (
args.get("icon_background") if args.get("icon_background") else app_data.get("icon_background")
)
name = args.get("name") or app_data.get("name")
description = args.get("description") or app_data.get("description", "")
icon_type = args.get("icon_type") or app_data.get("icon_type")
icon = args.get("icon") or app_data.get("icon")
icon_background = args.get("icon_background") or app_data.get("icon_background")
use_icon_as_answer_icon = app_data.get("use_icon_as_answer_icon", False)
# import dsl and create app

View File

@ -155,7 +155,7 @@ class DatasetService:
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
dataset.permission = permission if permission else DatasetPermissionEnum.ONLY_ME
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
db.session.add(dataset)
db.session.commit()
return dataset
@ -681,11 +681,7 @@ class DocumentService:
"score_threshold_enabled": False,
}
dataset.retrieval_model = (
document_data.get("retrieval_model")
if document_data.get("retrieval_model")
else default_retrieval_model
)
dataset.retrieval_model = document_data.get("retrieval_model") or default_retrieval_model
documents = []
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))

View File

@ -33,7 +33,7 @@ class HitTestingService:
# get retrieval model , if the model is not setting , using default
if not retrieval_model:
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
retrieval_model = dataset.retrieval_model or default_retrieval_model
all_documents = RetrievalService.retrieve(
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
@ -46,9 +46,7 @@ class HitTestingService:
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode")
if retrieval_model.get("reranking_mode")
else "reranking_model",
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)

View File

@ -1,6 +1,7 @@
import logging
import mimetypes
import os
from pathlib import Path
from typing import Optional, cast
import requests
@ -453,9 +454,8 @@ class ModelProviderService:
mimetype = mimetype or "application/octet-stream"
# read binary from file
with open(file_path, "rb") as f:
byte_data = f.read()
return byte_data, mimetype
byte_data = Path(file_path).read_bytes()
return byte_data, mimetype
def switch_preferred_provider(self, tenant_id: str, provider: str, preferred_provider_type: str) -> None:
"""

View File

@ -1,6 +1,7 @@
import json
import logging
from os import path
from pathlib import Path
from typing import Optional
import requests
@ -218,10 +219,9 @@ class RecommendedAppService:
return cls.builtin_data
root_path = current_app.root_path
with open(path.join(root_path, "constants", "recommended_apps.json"), encoding="utf-8") as f:
json_data = f.read()
data = json.loads(json_data)
cls.builtin_data = data
cls.builtin_data = json.loads(
Path(path.join(root_path, "constants", "recommended_apps.json")).read_text(encoding="utf-8")
)
return cls.builtin_data

Some files were not shown because too many files have changed in this diff Show More