mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
merge feat/attachments
Some checks failed
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Has been cancelled
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Has been cancelled
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Has been cancelled
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Has been cancelled
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Has been cancelled
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Has been cancelled
Some checks failed
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Has been cancelled
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Has been cancelled
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Has been cancelled
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Has been cancelled
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Has been cancelled
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Has been cancelled
This commit is contained in:
commit
43a35f9483
205
api/app.py
205
api/app.py
|
@ -10,44 +10,20 @@ if os.environ.get("DEBUG", "false").lower() != "true":
|
|||
grpc.experimental.gevent.init_gevent()
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
import warnings
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from werkzeug.exceptions import Unauthorized
|
||||
from flask import Response
|
||||
|
||||
import contexts
|
||||
from commands import register_commands
|
||||
from configs import dify_config
|
||||
from app_factory import create_app
|
||||
|
||||
# DO NOT REMOVE BELOW
|
||||
from events import event_handlers # noqa: F401
|
||||
from extensions import (
|
||||
ext_celery,
|
||||
ext_code_based_extension,
|
||||
ext_compress,
|
||||
ext_database,
|
||||
ext_hosting_provider,
|
||||
ext_login,
|
||||
ext_mail,
|
||||
ext_migrate,
|
||||
ext_proxy_fix,
|
||||
ext_redis,
|
||||
ext_sentry,
|
||||
ext_storage,
|
||||
)
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
from libs.passport import PassportService
|
||||
|
||||
# TODO: Find a way to avoid importing models here
|
||||
from models import account, dataset, model, source, task, tool, tools, web # noqa: F401
|
||||
from services.account_service import AccountService
|
||||
|
||||
# DO NOT REMOVE ABOVE
|
||||
|
||||
|
@ -60,189 +36,12 @@ if hasattr(time, "tzset"):
|
|||
time.tzset()
|
||||
|
||||
|
||||
class DifyApp(Flask):
|
||||
pass
|
||||
|
||||
|
||||
# -------------
|
||||
# Configuration
|
||||
# -------------
|
||||
|
||||
|
||||
config_type = os.getenv("EDITION", default="SELF_HOSTED") # ce edition first
|
||||
|
||||
|
||||
# ----------------------------
|
||||
# Application Factory Function
|
||||
# ----------------------------
|
||||
|
||||
|
||||
def create_flask_app_with_configs() -> Flask:
|
||||
"""
|
||||
create a raw flask app
|
||||
with configs loaded from .env file
|
||||
"""
|
||||
dify_app = DifyApp(__name__)
|
||||
dify_app.config.from_mapping(dify_config.model_dump())
|
||||
|
||||
# populate configs into system environment variables
|
||||
for key, value in dify_app.config.items():
|
||||
if isinstance(value, str):
|
||||
os.environ[key] = value
|
||||
elif isinstance(value, int | float | bool):
|
||||
os.environ[key] = str(value)
|
||||
elif value is None:
|
||||
os.environ[key] = ""
|
||||
|
||||
return dify_app
|
||||
|
||||
|
||||
def create_app() -> Flask:
|
||||
app = create_flask_app_with_configs()
|
||||
|
||||
app.secret_key = app.config["SECRET_KEY"]
|
||||
|
||||
log_handlers = None
|
||||
log_file = app.config.get("LOG_FILE")
|
||||
if log_file:
|
||||
log_dir = os.path.dirname(log_file)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
log_handlers = [
|
||||
RotatingFileHandler(
|
||||
filename=log_file,
|
||||
maxBytes=1024 * 1024 * 1024,
|
||||
backupCount=5,
|
||||
),
|
||||
logging.StreamHandler(sys.stdout),
|
||||
]
|
||||
|
||||
logging.basicConfig(
|
||||
level=app.config.get("LOG_LEVEL"),
|
||||
format=app.config["LOG_FORMAT"],
|
||||
datefmt=app.config.get("LOG_DATEFORMAT"),
|
||||
handlers=log_handlers,
|
||||
force=True,
|
||||
)
|
||||
log_tz = app.config.get("LOG_TZ")
|
||||
if log_tz:
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
|
||||
timezone = pytz.timezone(log_tz)
|
||||
|
||||
def time_converter(seconds):
|
||||
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
|
||||
|
||||
for handler in logging.root.handlers:
|
||||
assert handler.formatter
|
||||
handler.formatter.converter = time_converter
|
||||
initialize_extensions(app)
|
||||
register_blueprints(app)
|
||||
register_commands(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def initialize_extensions(app):
|
||||
# Since the application instance is now created, pass it to each Flask
|
||||
# extension instance to bind it to the Flask application instance (app)
|
||||
ext_compress.init_app(app)
|
||||
ext_code_based_extension.init()
|
||||
ext_database.init_app(app)
|
||||
ext_migrate.init(app, db)
|
||||
ext_redis.init_app(app)
|
||||
ext_storage.init_app(app)
|
||||
ext_celery.init_app(app)
|
||||
ext_login.init_app(app)
|
||||
ext_mail.init_app(app)
|
||||
ext_hosting_provider.init_app(app)
|
||||
ext_sentry.init_app(app)
|
||||
ext_proxy_fix.init_app(app)
|
||||
|
||||
|
||||
# Flask-Login configuration
|
||||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in {"console", "inner_api"}:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if not auth_header:
|
||||
auth_token = request.args.get("_token")
|
||||
if not auth_token:
|
||||
raise Unauthorized("Invalid Authorization token.")
|
||||
else:
|
||||
if " " not in auth_header:
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
|
||||
decoded = PassportService().verify(auth_token)
|
||||
user_id = decoded.get("user_id")
|
||||
|
||||
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
|
||||
if logged_in_account:
|
||||
contexts.tenant_id.set(logged_in_account.current_tenant_id)
|
||||
return logged_in_account
|
||||
|
||||
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
return Response(
|
||||
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
|
||||
status=401,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
# register blueprint routers
|
||||
def register_blueprints(app):
|
||||
from controllers.console import bp as console_app_bp
|
||||
from controllers.files import bp as files_bp
|
||||
from controllers.inner_api import bp as inner_api_bp
|
||||
from controllers.service_api import bp as service_api_bp
|
||||
from controllers.web import bp as web_bp
|
||||
|
||||
CORS(
|
||||
service_api_bp,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
)
|
||||
app.register_blueprint(service_api_bp)
|
||||
|
||||
CORS(
|
||||
web_bp,
|
||||
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(web_bp)
|
||||
|
||||
CORS(
|
||||
console_app_bp,
|
||||
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(console_app_bp)
|
||||
|
||||
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
|
||||
app.register_blueprint(files_bp)
|
||||
|
||||
app.register_blueprint(inner_api_bp)
|
||||
|
||||
|
||||
# create app
|
||||
app = create_app()
|
||||
celery = app.extensions["celery"]
|
||||
|
|
213
api/app_factory.py
Normal file
213
api/app_factory.py
Normal file
|
@ -0,0 +1,213 @@
|
|||
import os
|
||||
|
||||
if os.environ.get("DEBUG", "false").lower() != "true":
|
||||
from gevent import monkey
|
||||
|
||||
monkey.patch_all()
|
||||
|
||||
import grpc.experimental.gevent
|
||||
|
||||
grpc.experimental.gevent.init_gevent()
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
from logging.handlers import RotatingFileHandler
|
||||
|
||||
from flask import Flask, Response, request
|
||||
from flask_cors import CORS
|
||||
from werkzeug.exceptions import Unauthorized
|
||||
|
||||
import contexts
|
||||
from commands import register_commands
|
||||
from configs import dify_config
|
||||
from extensions import (
|
||||
ext_celery,
|
||||
ext_code_based_extension,
|
||||
ext_compress,
|
||||
ext_database,
|
||||
ext_hosting_provider,
|
||||
ext_login,
|
||||
ext_mail,
|
||||
ext_migrate,
|
||||
ext_proxy_fix,
|
||||
ext_redis,
|
||||
ext_sentry,
|
||||
ext_storage,
|
||||
)
|
||||
from extensions.ext_database import db
|
||||
from extensions.ext_login import login_manager
|
||||
from libs.passport import PassportService
|
||||
from services.account_service import AccountService
|
||||
|
||||
|
||||
class DifyApp(Flask):
|
||||
pass
|
||||
|
||||
|
||||
# ----------------------------
|
||||
# Application Factory Function
|
||||
# ----------------------------
|
||||
def create_flask_app_with_configs() -> Flask:
|
||||
"""
|
||||
create a raw flask app
|
||||
with configs loaded from .env file
|
||||
"""
|
||||
dify_app = DifyApp(__name__)
|
||||
dify_app.config.from_mapping(dify_config.model_dump())
|
||||
|
||||
# populate configs into system environment variables
|
||||
for key, value in dify_app.config.items():
|
||||
if isinstance(value, str):
|
||||
os.environ[key] = value
|
||||
elif isinstance(value, int | float | bool):
|
||||
os.environ[key] = str(value)
|
||||
elif value is None:
|
||||
os.environ[key] = ""
|
||||
|
||||
return dify_app
|
||||
|
||||
|
||||
def create_app() -> Flask:
|
||||
app = create_flask_app_with_configs()
|
||||
|
||||
app.secret_key = app.config["SECRET_KEY"]
|
||||
|
||||
log_handlers = None
|
||||
log_file = app.config.get("LOG_FILE")
|
||||
if log_file:
|
||||
log_dir = os.path.dirname(log_file)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
log_handlers = [
|
||||
RotatingFileHandler(
|
||||
filename=log_file,
|
||||
maxBytes=1024 * 1024 * 1024,
|
||||
backupCount=5,
|
||||
),
|
||||
logging.StreamHandler(sys.stdout),
|
||||
]
|
||||
|
||||
logging.basicConfig(
|
||||
level=app.config.get("LOG_LEVEL"),
|
||||
format=app.config.get("LOG_FORMAT"),
|
||||
datefmt=app.config.get("LOG_DATEFORMAT"),
|
||||
handlers=log_handlers,
|
||||
force=True,
|
||||
)
|
||||
log_tz = app.config.get("LOG_TZ")
|
||||
if log_tz:
|
||||
from datetime import datetime
|
||||
|
||||
import pytz
|
||||
|
||||
timezone = pytz.timezone(log_tz)
|
||||
|
||||
def time_converter(seconds):
|
||||
return datetime.utcfromtimestamp(seconds).astimezone(timezone).timetuple()
|
||||
|
||||
for handler in logging.root.handlers:
|
||||
handler.formatter.converter = time_converter
|
||||
initialize_extensions(app)
|
||||
register_blueprints(app)
|
||||
register_commands(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def initialize_extensions(app):
|
||||
# Since the application instance is now created, pass it to each Flask
|
||||
# extension instance to bind it to the Flask application instance (app)
|
||||
ext_compress.init_app(app)
|
||||
ext_code_based_extension.init()
|
||||
ext_database.init_app(app)
|
||||
ext_migrate.init(app, db)
|
||||
ext_redis.init_app(app)
|
||||
ext_storage.init_app(app)
|
||||
ext_celery.init_app(app)
|
||||
ext_login.init_app(app)
|
||||
ext_mail.init_app(app)
|
||||
ext_hosting_provider.init_app(app)
|
||||
ext_sentry.init_app(app)
|
||||
ext_proxy_fix.init_app(app)
|
||||
|
||||
|
||||
# Flask-Login configuration
|
||||
@login_manager.request_loader
|
||||
def load_user_from_request(request_from_flask_login):
|
||||
"""Load user based on the request."""
|
||||
if request.blueprint not in {"console", "inner_api"}:
|
||||
return None
|
||||
# Check if the user_id contains a dot, indicating the old format
|
||||
auth_header = request.headers.get("Authorization", "")
|
||||
if not auth_header:
|
||||
auth_token = request.args.get("_token")
|
||||
if not auth_token:
|
||||
raise Unauthorized("Invalid Authorization token.")
|
||||
else:
|
||||
if " " not in auth_header:
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
auth_scheme, auth_token = auth_header.split(None, 1)
|
||||
auth_scheme = auth_scheme.lower()
|
||||
if auth_scheme != "bearer":
|
||||
raise Unauthorized("Invalid Authorization header format. Expected 'Bearer <api-key>' format.")
|
||||
|
||||
decoded = PassportService().verify(auth_token)
|
||||
user_id = decoded.get("user_id")
|
||||
|
||||
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
|
||||
if logged_in_account:
|
||||
contexts.tenant_id.set(logged_in_account.current_tenant_id)
|
||||
return logged_in_account
|
||||
|
||||
|
||||
@login_manager.unauthorized_handler
|
||||
def unauthorized_handler():
|
||||
"""Handle unauthorized requests."""
|
||||
return Response(
|
||||
json.dumps({"code": "unauthorized", "message": "Unauthorized."}),
|
||||
status=401,
|
||||
content_type="application/json",
|
||||
)
|
||||
|
||||
|
||||
# register blueprint routers
|
||||
def register_blueprints(app):
|
||||
from controllers.console import bp as console_app_bp
|
||||
from controllers.files import bp as files_bp
|
||||
from controllers.inner_api import bp as inner_api_bp
|
||||
from controllers.service_api import bp as service_api_bp
|
||||
from controllers.web import bp as web_bp
|
||||
|
||||
CORS(
|
||||
service_api_bp,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
)
|
||||
app.register_blueprint(service_api_bp)
|
||||
|
||||
CORS(
|
||||
web_bp,
|
||||
resources={r"/*": {"origins": app.config["WEB_API_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization", "X-App-Code"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(web_bp)
|
||||
|
||||
CORS(
|
||||
console_app_bp,
|
||||
resources={r"/*": {"origins": app.config["CONSOLE_CORS_ALLOW_ORIGINS"]}},
|
||||
supports_credentials=True,
|
||||
allow_headers=["Content-Type", "Authorization"],
|
||||
methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"],
|
||||
expose_headers=["X-Version", "X-Env"],
|
||||
)
|
||||
|
||||
app.register_blueprint(console_app_bp)
|
||||
|
||||
CORS(files_bp, allow_headers=["Content-Type"], methods=["GET", "PUT", "POST", "DELETE", "OPTIONS", "PATCH"])
|
||||
app.register_blueprint(files_bp)
|
||||
|
||||
app.register_blueprint(inner_api_bp)
|
|
@ -259,6 +259,25 @@ def migrate_knowledge_vector_database():
|
|||
skipped_count = 0
|
||||
total_count = 0
|
||||
vector_type = dify_config.VECTOR_STORE
|
||||
upper_colletion_vector_types = {
|
||||
VectorType.MILVUS,
|
||||
VectorType.PGVECTOR,
|
||||
VectorType.RELYT,
|
||||
VectorType.WEAVIATE,
|
||||
VectorType.ORACLE,
|
||||
VectorType.ELASTICSEARCH,
|
||||
}
|
||||
lower_colletion_vector_types = {
|
||||
VectorType.ANALYTICDB,
|
||||
VectorType.CHROMA,
|
||||
VectorType.MYSCALE,
|
||||
VectorType.PGVECTO_RS,
|
||||
VectorType.TIDB_VECTOR,
|
||||
VectorType.OPENSEARCH,
|
||||
VectorType.TENCENT,
|
||||
VectorType.BAIDU,
|
||||
VectorType.VIKINGDB,
|
||||
}
|
||||
page = 1
|
||||
while True:
|
||||
try:
|
||||
|
@ -284,11 +303,9 @@ def migrate_knowledge_vector_database():
|
|||
skipped_count = skipped_count + 1
|
||||
continue
|
||||
collection_name = ""
|
||||
if vector_type == VectorType.WEAVIATE:
|
||||
dataset_id = dataset.id
|
||||
if vector_type in upper_colletion_vector_types:
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.WEAVIATE, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.QDRANT:
|
||||
if dataset.collection_binding_id:
|
||||
dataset_collection_binding = (
|
||||
|
@ -301,63 +318,15 @@ def migrate_knowledge_vector_database():
|
|||
else:
|
||||
raise ValueError("Dataset Collection Binding not found")
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.QDRANT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
|
||||
elif vector_type == VectorType.MILVUS:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.MILVUS, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.RELYT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": "relyt", "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.TENCENT:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.TENCENT, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.PGVECTOR:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": VectorType.PGVECTOR, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.OPENSEARCH:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.OPENSEARCH,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ANALYTICDB:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.ANALYTICDB,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ELASTICSEARCH:
|
||||
dataset_id = dataset.id
|
||||
index_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {"type": "elasticsearch", "vector_store": {"class_prefix": index_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.BAIDU:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": VectorType.BAIDU,
|
||||
"vector_store": {"class_prefix": collection_name},
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type in lower_colletion_vector_types:
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id).lower()
|
||||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
index_struct_dict = {"type": vector_type, "vector_store": {"class_prefix": collection_name}}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
vector = Vector(dataset)
|
||||
click.echo(f"Migrating dataset {dataset.id}.")
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ import os
|
|||
from collections.abc import Callable, Generator, Iterable, Sequence
|
||||
from typing import IO, Any, Optional, Union, cast
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||
from core.entities.provider_entities import ModelLoadBalancingConfiguration
|
||||
from core.errors.error import ProviderTokenNotInitError
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from pydantic import ConfigDict
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.__base.ai_model import AIModel
|
||||
|
|
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
import tiktoken
|
||||
from openai import AzureOpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -13,7 +13,7 @@ from botocore.exceptions import (
|
|||
UnknownServiceError,
|
||||
)
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -5,7 +5,7 @@ import cohere
|
|||
import numpy as np
|
||||
from cohere.core import RequestOptions
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import Optional, Union
|
|||
import numpy as np
|
||||
from openai import OpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
|
|
@ -18,6 +18,7 @@ help:
|
|||
en_US: https://console.groq.com/
|
||||
supported_model_types:
|
||||
- llm
|
||||
- speech2text
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
provider_credential_schema:
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
model: llama-3.2-11b-vision-preview
|
||||
label:
|
||||
zh_Hans: Llama 3.2 11B Vision (Preview)
|
||||
en_US: Llama 3.2 11B Vision (Preview)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 8192
|
||||
pricing:
|
||||
input: '0.05'
|
||||
output: '0.1'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
|
@ -0,0 +1,26 @@
|
|||
model: llama-3.2-90b-vision-preview
|
||||
label:
|
||||
zh_Hans: Llama 3.2 90B Vision (Preview)
|
||||
en_US: Llama 3.2 90B Vision (Preview)
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
- vision
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 131072
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 512
|
||||
min: 1
|
||||
max: 8192
|
||||
pricing:
|
||||
input: '0.05'
|
||||
output: '0.1'
|
||||
unit: '0.000001'
|
||||
currency: USD
|
|
@ -0,0 +1,5 @@
|
|||
model: distil-whisper-large-v3-en
|
||||
model_type: speech2text
|
||||
model_properties:
|
||||
file_upload_limit: 1
|
||||
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm
|
|
@ -0,0 +1,30 @@
|
|||
from typing import IO, Optional
|
||||
|
||||
from core.model_runtime.model_providers.openai_api_compatible.speech2text.speech2text import OAICompatSpeech2TextModel
|
||||
|
||||
|
||||
class GroqSpeech2TextModel(OAICompatSpeech2TextModel):
|
||||
"""
|
||||
Model class for Groq Speech to text model.
|
||||
"""
|
||||
|
||||
def _invoke(self, model: str, credentials: dict, file: IO[bytes], user: Optional[str] = None) -> str:
|
||||
"""
|
||||
Invoke speech2text model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param file: audio file
|
||||
:param user: unique user id
|
||||
:return: text for given audio file
|
||||
"""
|
||||
self._add_custom_parameters(credentials)
|
||||
return super()._invoke(model, credentials, file)
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
self._add_custom_parameters(credentials)
|
||||
return super().validate_credentials(model, credentials)
|
||||
|
||||
@classmethod
|
||||
def _add_custom_parameters(cls, credentials: dict) -> None:
|
||||
credentials["endpoint_url"] = "https://api.groq.com/openai/v1"
|
|
@ -0,0 +1,5 @@
|
|||
model: whisper-large-v3-turbo
|
||||
model_type: speech2text
|
||||
model_properties:
|
||||
file_upload_limit: 1
|
||||
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm
|
|
@ -0,0 +1,5 @@
|
|||
model: whisper-large-v3
|
||||
model_type: speech2text
|
||||
model_properties:
|
||||
file_upload_limit: 1
|
||||
supported_file_extensions: flac,mp3,mp4,mpeg,mpga,m4a,ogg,wav,webm
|
|
@ -6,7 +6,7 @@ import numpy as np
|
|||
import requests
|
||||
from huggingface_hub import HfApi, InferenceClient
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import time
|
||||
from typing import Optional
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -9,7 +9,7 @@ from tencentcloud.common.profile.client_profile import ClientProfile
|
|||
from tencentcloud.common.profile.http_profile import HttpProfile
|
||||
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import Optional
|
|||
from requests import post
|
||||
from yarl import URL
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import Optional
|
|||
from nomic import embed
|
||||
from nomic import login as nomic_login
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import (
|
||||
EmbeddingUsage,
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from requests import post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -6,7 +6,7 @@ from typing import Optional
|
|||
import numpy as np
|
||||
import oci
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -8,7 +8,7 @@ from urllib.parse import urljoin
|
|||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
|
|
@ -6,7 +6,7 @@ import numpy as np
|
|||
import tiktoken
|
||||
from openai import OpenAI
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
|
|
@ -7,7 +7,7 @@ from urllib.parse import urljoin
|
|||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import Optional
|
|||
from requests import post
|
||||
from requests.exceptions import ConnectionError, InvalidSchema, MissingSchema
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
|
|
|
@ -35,6 +35,15 @@ parameter_rules:
|
|||
help:
|
||||
zh_Hans: 控制生成结果的随机性。数值越小,随机性越弱;数值越大,随机性越强。一般而言,top_p 和 temperature 两个参数选择一个进行调整即可。
|
||||
en_US: Control the randomness of generated results. The smaller the value, the weaker the randomness; the larger the value, the stronger the randomness. Generally speaking, you can adjust one of the two parameters top_p and temperature.
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
default: 0
|
||||
|
|
|
@ -18,6 +18,15 @@ parameter_rules:
|
|||
min: 0
|
||||
max: 1
|
||||
default: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
min: 1
|
||||
|
|
|
@ -14,6 +14,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -14,6 +14,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -14,6 +14,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -16,6 +16,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -15,6 +15,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -15,6 +15,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -10,6 +10,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
|
|
@ -10,6 +10,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
|
|
@ -10,6 +10,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
|
|
@ -10,6 +10,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
|
|
@ -10,6 +10,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
required: true
|
||||
|
|
|
@ -18,6 +18,15 @@ parameter_rules:
|
|||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
|
|
@ -18,6 +18,15 @@ parameter_rules:
|
|||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
|
|
@ -19,6 +19,15 @@ parameter_rules:
|
|||
default: 1
|
||||
min: 0
|
||||
max: 1
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
default: 1024
|
||||
|
|
|
@ -12,6 +12,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -12,6 +12,15 @@ parameter_rules:
|
|||
use_template: temperature
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: presence_penalty
|
||||
use_template: presence_penalty
|
||||
- name: frequency_penalty
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -7,7 +7,7 @@ from urllib.parse import urljoin
|
|||
import numpy as np
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
from replicate import Client as ReplicateClient
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -14,6 +14,7 @@ from core.model_runtime.errors.invoke import (
|
|||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
|
||||
from core.model_runtime.model_providers.sagemaker.sagemaker import generate_presigned_url
|
||||
|
||||
|
@ -77,7 +78,8 @@ class SageMakerSpeech2TextModel(Speech2TextModel):
|
|||
json_obj = json.loads(json_str)
|
||||
asr_text = json_obj["text"]
|
||||
except Exception as e:
|
||||
logger.exception(f"Exception {e}, line : {line}")
|
||||
logger.exception(f"failed to invoke speech2text model, {e}")
|
||||
raise CredentialsValidateFailedError(str(e))
|
||||
|
||||
return asr_text
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ from typing import Any, Optional
|
|||
|
||||
import boto3
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -21,6 +21,15 @@ parameter_rules:
|
|||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
- name: top_k
|
||||
label:
|
||||
zh_Hans: 取样数量
|
||||
en_US: Top k
|
||||
type: int
|
||||
help:
|
||||
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
|
||||
en_US: Only sample from the top K options for each subsequent token.
|
||||
required: false
|
||||
- name: frequency_penalty
|
||||
use_template: frequency_penalty
|
||||
pricing:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from typing import Optional
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
|
||||
from core.model_runtime.model_providers.openai_api_compatible.text_embedding.text_embedding import (
|
||||
OAICompatEmbeddingModel,
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
import dashscope
|
||||
import numpy as np
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import (
|
||||
EmbeddingUsage,
|
||||
|
|
|
@ -7,7 +7,7 @@ import numpy as np
|
|||
from openai import OpenAI
|
||||
from tokenizers import Tokenizer
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
|
|
|
@ -9,7 +9,7 @@ from google.cloud import aiplatform
|
|||
from google.oauth2 import service_account
|
||||
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
|
|
@ -2,7 +2,7 @@ import time
|
|||
from decimal import Decimal
|
||||
from typing import Optional
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import Optional
|
|||
|
||||
import requests
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -120,6 +120,7 @@ class _CommonWenxin:
|
|||
"bge-large-en": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_en",
|
||||
"bge-large-zh": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/bge_large_zh",
|
||||
"tao-8k": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/embeddings/tao_8k",
|
||||
"bce-reranker-base_v1": "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/reranker/bce_reranker_base",
|
||||
}
|
||||
|
||||
function_calling_supports = [
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
model: bce-reranker-base_v1
|
||||
model_type: rerank
|
||||
model_properties:
|
||||
context_size: 4096
|
||||
pricing:
|
||||
input: '0.0005'
|
||||
unit: '0.001'
|
||||
currency: RMB
|
147
api/core/model_runtime/model_providers/wenxin/rerank/rerank.py
Normal file
147
api/core/model_runtime/model_providers/wenxin/rerank/rerank.py
Normal file
|
@ -0,0 +1,147 @@
|
|||
from typing import Optional
|
||||
|
||||
import httpx
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType
|
||||
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
|
||||
from core.model_runtime.errors.invoke import (
|
||||
InvokeAuthorizationError,
|
||||
InvokeBadRequestError,
|
||||
InvokeConnectionError,
|
||||
InvokeError,
|
||||
InvokeRateLimitError,
|
||||
InvokeServerUnavailableError,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
|
||||
from core.model_runtime.model_providers.wenxin._common import _CommonWenxin
|
||||
|
||||
|
||||
class WenxinRerank(_CommonWenxin):
|
||||
def rerank(self, model: str, query: str, docs: list[str], top_n: Optional[int] = None):
|
||||
access_token = self._get_access_token()
|
||||
url = f"{self.api_bases[model]}?access_token={access_token}"
|
||||
|
||||
try:
|
||||
response = httpx.post(
|
||||
url,
|
||||
json={"model": model, "query": query, "documents": docs, "top_n": top_n},
|
||||
headers={"Content-Type": "application/json"},
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise InvokeServerUnavailableError(str(e))
|
||||
|
||||
|
||||
class WenxinRerankModel(RerankModel):
|
||||
"""
|
||||
Model class for wenxin rerank model.
|
||||
"""
|
||||
|
||||
def _invoke(
|
||||
self,
|
||||
model: str,
|
||||
credentials: dict,
|
||||
query: str,
|
||||
docs: list[str],
|
||||
score_threshold: Optional[float] = None,
|
||||
top_n: Optional[int] = None,
|
||||
user: Optional[str] = None,
|
||||
) -> RerankResult:
|
||||
"""
|
||||
Invoke rerank model
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:param query: search query
|
||||
:param docs: docs for reranking
|
||||
:param score_threshold: score threshold
|
||||
:param top_n: top n documents to return
|
||||
:param user: unique user id
|
||||
:return: rerank result
|
||||
"""
|
||||
if len(docs) == 0:
|
||||
return RerankResult(model=model, docs=[])
|
||||
|
||||
api_key = credentials["api_key"]
|
||||
secret_key = credentials["secret_key"]
|
||||
|
||||
wenxin_rerank: WenxinRerank = WenxinRerank(api_key, secret_key)
|
||||
|
||||
try:
|
||||
results = wenxin_rerank.rerank(model, query, docs, top_n)
|
||||
|
||||
rerank_documents = []
|
||||
for result in results["results"]:
|
||||
index = result["index"]
|
||||
if "document" in result:
|
||||
text = result["document"]
|
||||
else:
|
||||
# llama.cpp rerank maynot return original documents
|
||||
text = docs[index]
|
||||
|
||||
rerank_document = RerankDocument(
|
||||
index=index,
|
||||
text=text,
|
||||
score=result["relevance_score"],
|
||||
)
|
||||
|
||||
if score_threshold is None or result["relevance_score"] >= score_threshold:
|
||||
rerank_documents.append(rerank_document)
|
||||
|
||||
return RerankResult(model=model, docs=rerank_documents)
|
||||
except httpx.HTTPStatusError as e:
|
||||
raise InvokeServerUnavailableError(str(e))
|
||||
|
||||
def validate_credentials(self, model: str, credentials: dict) -> None:
|
||||
"""
|
||||
Validate model credentials
|
||||
|
||||
:param model: model name
|
||||
:param credentials: model credentials
|
||||
:return:
|
||||
"""
|
||||
try:
|
||||
self._invoke(
|
||||
model=model,
|
||||
credentials=credentials,
|
||||
query="What is the capital of the United States?",
|
||||
docs=[
|
||||
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
|
||||
"Census, Carson City had a population of 55,274.",
|
||||
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
|
||||
"are a political division controlled by the United States. Its capital is Saipan.",
|
||||
],
|
||||
score_threshold=0.8,
|
||||
)
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@property
|
||||
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
|
||||
"""
|
||||
Map model invoke error to unified error
|
||||
"""
|
||||
return {
|
||||
InvokeConnectionError: [httpx.ConnectError],
|
||||
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
|
||||
InvokeRateLimitError: [],
|
||||
InvokeAuthorizationError: [httpx.HTTPStatusError],
|
||||
InvokeBadRequestError: [httpx.RequestError],
|
||||
}
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
"""
|
||||
generate custom model entities from credentials
|
||||
"""
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
model_type=ModelType.RERANK,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size"))},
|
||||
)
|
||||
|
||||
return entity
|
|
@ -7,7 +7,7 @@ from typing import Any, Optional
|
|||
import numpy as np
|
||||
from requests import Response, post
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.model_entities import PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
from core.model_runtime.errors.invoke import InvokeError
|
||||
|
|
|
@ -18,6 +18,7 @@ help:
|
|||
supported_model_types:
|
||||
- llm
|
||||
- text-embedding
|
||||
- rerank
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
provider_credential_schema:
|
||||
|
|
|
@ -3,7 +3,7 @@ from typing import Optional
|
|||
|
||||
from xinference_client.client.restful.restful_client import Client, RESTfulEmbeddingModelHandle
|
||||
|
||||
from core.embedding.embedding_constant import EmbeddingInputType
|
||||
from core.entities.embedding_type import EmbeddingInputType
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
|
||||
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
|
||||
|
|
|
@ -7,3 +7,4 @@
|
|||
- yi-medium-200k
|
||||
- yi-spark
|
||||
- yi-large-turbo
|
||||
- yi-lightning
|
||||
|
|
|
@ -4,12 +4,22 @@ from urllib.parse import urlparse
|
|||
|
||||
import tiktoken
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
SystemPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
FetchFrom,
|
||||
ModelFeature,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
)
|
||||
from core.model_runtime.model_providers.openai.llm.llm import OpenAILargeLanguageModel
|
||||
|
||||
|
||||
|
@ -125,3 +135,58 @@ class YiLargeLanguageModel(OpenAILargeLanguageModel):
|
|||
else:
|
||||
parsed_url = urlparse(credentials["endpoint_url"])
|
||||
credentials["openai_api_base"] = f"{parsed_url.scheme}://{parsed_url.netloc}"
|
||||
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
|
||||
return AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model, zh_Hans=model),
|
||||
model_type=ModelType.LLM,
|
||||
features=[ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL]
|
||||
if credentials.get("function_calling_type") == "tool_call"
|
||||
else [],
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
model_properties={
|
||||
ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size", 8000)),
|
||||
ModelPropertyKey.MODE: LLMMode.CHAT.value,
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name="temperature",
|
||||
use_template="temperature",
|
||||
label=I18nObject(en_US="Temperature", zh_Hans="温度"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="max_tokens",
|
||||
use_template="max_tokens",
|
||||
default=512,
|
||||
min=1,
|
||||
max=int(credentials.get("max_tokens", 8192)),
|
||||
label=I18nObject(
|
||||
en_US="Max Tokens", zh_Hans="指定生成结果长度的上限。如果生成结果截断,可以调大该参数"
|
||||
),
|
||||
type=ParameterType.INT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_p",
|
||||
use_template="top_p",
|
||||
label=I18nObject(
|
||||
en_US="Top P",
|
||||
zh_Hans="控制生成结果的随机性。数值越小,随机性越弱;数值越大,随机性越强。",
|
||||
),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="top_k",
|
||||
use_template="top_k",
|
||||
label=I18nObject(en_US="Top K", zh_Hans="取样数量"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
ParameterRule(
|
||||
name="frequency_penalty",
|
||||
use_template="frequency_penalty",
|
||||
label=I18nObject(en_US="Frequency Penalty", zh_Hans="重复惩罚"),
|
||||
type=ParameterType.FLOAT,
|
||||
),
|
||||
],
|
||||
)
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
model: yi-lightning
|
||||
label:
|
||||
zh_Hans: yi-lightning
|
||||
en_US: yi-lightning
|
||||
model_type: llm
|
||||
features:
|
||||
- agent-thought
|
||||
model_properties:
|
||||
mode: chat
|
||||
context_size: 16384
|
||||
parameter_rules:
|
||||
- name: temperature
|
||||
use_template: temperature
|
||||
type: float
|
||||
default: 0.3
|
||||
min: 0.0
|
||||
max: 2.0
|
||||
help:
|
||||
zh_Hans: 控制生成结果的多样性和随机性。数值越小,越严谨;数值越大,越发散。
|
||||
en_US: Control the diversity and randomness of generated results. The smaller the value, the more rigorous it is; the larger the value, the more divergent it is.
|
||||
- name: max_tokens
|
||||
use_template: max_tokens
|
||||
type: int
|
||||
default: 1024
|
||||
min: 1
|
||||
max: 4000
|
||||
help:
|
||||
zh_Hans: 指定生成结果长度的上限。如果生成结果截断,可以调大该参数。
|
||||
en_US: Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.
|
||||
- name: top_p
|
||||
use_template: top_p
|
||||
type: float
|
||||
default: 0.9
|
||||
min: 0.01
|
||||
max: 1.00
|
||||
help:
|
||||
zh_Hans: 控制生成结果的随机性。数值越小,随机性越弱;数值越大,随机性越强。一般而言,top_p 和 temperature 两个参数选择一个进行调整即可。
|
||||
en_US: Control the randomness of generated results. The smaller the value, the weaker the randomness; the larger the value, the stronger the randomness. Generally speaking, you can adjust one of the two parameters top_p and temperature.
|
||||
pricing:
|
||||
input: '0.99'
|
||||
output: '0.99'
|
||||
unit: '0.000001'
|
||||
currency: RMB
|
|
@ -20,6 +20,7 @@ supported_model_types:
|
|||
- llm
|
||||
configurate_methods:
|
||||
- predefined-model
|
||||
- customizable-model
|
||||
provider_credential_schema:
|
||||
credential_form_schemas:
|
||||
- variable: api_key
|
||||
|
@ -39,3 +40,57 @@ provider_credential_schema:
|
|||
placeholder:
|
||||
zh_Hans: Base URL, e.g. https://api.lingyiwanwu.com/v1
|
||||
en_US: Base URL, e.g. https://api.lingyiwanwu.com/v1
|
||||
model_credential_schema:
|
||||
model:
|
||||
label:
|
||||
en_US: Model Name
|
||||
zh_Hans: 模型名称
|
||||
placeholder:
|
||||
en_US: Enter your model name
|
||||
zh_Hans: 输入模型名称
|
||||
credential_form_schemas:
|
||||
- variable: api_key
|
||||
label:
|
||||
en_US: API Key
|
||||
type: secret-input
|
||||
required: true
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的 API Key
|
||||
en_US: Enter your API Key
|
||||
- variable: context_size
|
||||
label:
|
||||
zh_Hans: 模型上下文长度
|
||||
en_US: Model context size
|
||||
required: true
|
||||
type: text-input
|
||||
default: '4096'
|
||||
placeholder:
|
||||
zh_Hans: 在此输入您的模型上下文长度
|
||||
en_US: Enter your Model context size
|
||||
- variable: max_tokens
|
||||
label:
|
||||
zh_Hans: 最大 token 上限
|
||||
en_US: Upper bound for max tokens
|
||||
default: '4096'
|
||||
type: text-input
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
- variable: function_calling_type
|
||||
label:
|
||||
en_US: Function calling
|
||||
type: select
|
||||
required: false
|
||||
default: no_call
|
||||
options:
|
||||
- value: no_call
|
||||
label:
|
||||
en_US: Not Support
|
||||
zh_Hans: 不支持
|
||||
- value: function_call
|
||||
label:
|
||||
en_US: Support
|
||||
zh_Hans: 支持
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user