Add data clean schedule (#1859)

Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
Jyong 2024-01-02 15:29:18 +08:00 committed by GitHub
parent 06d2d8cea3
commit 595e9b25ba
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 124 additions and 1 deletions

View File

@ -10,6 +10,8 @@ fi
if [[ "${MODE}" == "worker" ]]; then
celery -A app.celery worker -P ${CELERY_WORKER_CLASS:-gevent} -c ${CELERY_WORKER_AMOUNT:-1} --loglevel INFO \
-Q ${CELERY_QUEUES:-dataset,generation,mail}
elif [[ "${MODE}" == "beat" ]]; then
celery -A app.celery beat --loglevel INFO
else
if [[ "${DEBUG}" == "true" ]]; then
flask run --host=${DIFY_BIND_ADDRESS:-0.0.0.0} --port=${DIFY_PORT:-5001} --debug

View File

@ -1,3 +1,5 @@
from datetime import timedelta
from celery import Task, Celery
from flask import Flask
@ -35,4 +37,25 @@ def init_app(app: Flask) -> Celery:
celery_app.set_default()
app.extensions["celery"] = celery_app
imports = [
"schedule.clean_embedding_cache_task",
"schedule.clean_unused_datasets_task",
]
beat_schedule = {
'clean_embedding_cache_task': {
'task': 'schedule.clean_embedding_cache_task.clean_embedding_cache_task',
'schedule': timedelta(minutes=1),
},
'clean_unused_datasets_task': {
'task': 'schedule.clean_unused_datasets_task.clean_unused_datasets_task',
'schedule': timedelta(minutes=10),
}
}
celery_app.conf.update(
beat_schedule=beat_schedule,
imports=imports
)
return celery_app

View File

@ -57,4 +57,4 @@ cohere~=4.32
unstructured~=0.10.27
unstructured[docx,pptx,msg,md,ppt]~=0.10.27
bs4~=0.0.1
markdown~=3.5.1
markdown~=3.5.1

View File

@ -0,0 +1,29 @@
import app
import datetime
import time
import click
from flask import current_app
from werkzeug.exceptions import NotFound
from extensions.ext_database import db
from models.dataset import Embedding
@app.celery.task(queue='dataset')
def clean_embedding_cache_task():
click.echo(click.style('Start clean embedding cache.', fg='green'))
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
start_at = time.perf_counter()
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
page = 1
while True:
try:
embeddings = db.session.query(Embedding).filter(Embedding.created_at < thirty_days_ago) \
.order_by(Embedding.created_at.desc()).paginate(page=page, per_page=100)
except NotFound:
break
for embedding in embeddings:
db.session.delete(embedding)
db.session.commit()
page += 1
end_at = time.perf_counter()
click.echo(click.style('Cleaned embedding cache from db success latency: {}'.format(end_at - start_at), fg='green'))

View File

@ -0,0 +1,69 @@
import logging
import app
import datetime
import time
import click
from flask import current_app
from werkzeug.exceptions import NotFound
from core.index.index import IndexBuilder
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
@app.celery.task(queue='dataset')
def clean_unused_datasets_task():
click.echo(click.style('Start clean unused datasets indexes.', fg='green'))
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
start_at = time.perf_counter()
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
page = 1
while True:
try:
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
except NotFound:
break
page += 1
for dataset in datasets:
dataset_query = db.session.query(DatasetQuery).filter(
DatasetQuery.created_at > thirty_days_ago,
DatasetQuery.dataset_id == dataset.id
).all()
if not dataset_query or len(dataset_query) == 0:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset.id,
Document.indexing_status == 'completed',
Document.enabled == True,
Document.archived == False,
Document.updated_at > thirty_days_ago
).all()
if not documents or len(documents) == 0:
try:
# remove index
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from vector index
if vector_index:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
if dataset.collection_binding_id:
vector_index.delete_by_group_id(dataset.id)
else:
vector_index.delete()
kw_index.delete()
# update document
update_params = {
Document.enabled: False
}
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
db.session.commit()
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
fg='green'))
except Exception as e:
click.echo(
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
fg='red'))
end_at = time.perf_counter()
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))