mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
add embedding cache and clean embedding cache job (#3087)
Co-authored-by: jyong <jyong@dify.ai>
This commit is contained in:
parent
7f55ea0c53
commit
5e66a60f1c
|
@ -12,6 +12,7 @@ from core.rag.datasource.entity.embedding import Embeddings
|
|||
from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from libs import helper
|
||||
from models.dataset import Embedding
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -23,32 +24,55 @@ class CacheEmbedding(Embeddings):
|
|||
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
"""Embed search docs in batches of 10."""
|
||||
text_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
||||
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
||||
for i in range(0, len(texts), max_chunks):
|
||||
batch_texts = texts[i:i + max_chunks]
|
||||
# use doc embedding cache or store if not exists
|
||||
text_embeddings = [None for _ in range(len(texts))]
|
||||
embedding_queue_indices = []
|
||||
for i, text in enumerate(texts):
|
||||
hash = helper.generate_text_hash(text)
|
||||
embedding = db.session.query(Embedding).filter_by(model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider).first()
|
||||
if embedding:
|
||||
text_embeddings[i] = embedding.get_embedding()
|
||||
else:
|
||||
embedding_queue_indices.append(i)
|
||||
if embedding_queue_indices:
|
||||
embedding_queue_texts = [texts[i] for i in embedding_queue_indices]
|
||||
embedding_queue_embeddings = []
|
||||
try:
|
||||
model_type_instance = cast(TextEmbeddingModel, self._model_instance.model_type_instance)
|
||||
model_schema = model_type_instance.get_model_schema(self._model_instance.model, self._model_instance.credentials)
|
||||
max_chunks = model_schema.model_properties[ModelPropertyKey.MAX_CHUNKS] \
|
||||
if model_schema and ModelPropertyKey.MAX_CHUNKS in model_schema.model_properties else 1
|
||||
for i in range(0, len(embedding_queue_texts), max_chunks):
|
||||
batch_texts = embedding_queue_texts[i:i + max_chunks]
|
||||
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts,
|
||||
user=self._user
|
||||
)
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=batch_texts,
|
||||
user=self._user
|
||||
)
|
||||
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||
text_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception('Failed to add embedding to redis')
|
||||
|
||||
except Exception as ex:
|
||||
logger.error('Failed to embed documents: ', ex)
|
||||
raise ex
|
||||
for vector in embedding_result.embeddings:
|
||||
try:
|
||||
normalized_embedding = (vector / np.linalg.norm(vector)).tolist()
|
||||
embedding_queue_embeddings.append(normalized_embedding)
|
||||
except IntegrityError:
|
||||
db.session.rollback()
|
||||
except Exception as e:
|
||||
logging.exception('Failed transform embedding: ', e)
|
||||
for i, embedding in zip(embedding_queue_indices, embedding_queue_embeddings):
|
||||
text_embeddings[i] = embedding
|
||||
hash = helper.generate_text_hash(texts[i])
|
||||
embedding_cache = Embedding(model_name=self._model_instance.model,
|
||||
hash=hash,
|
||||
provider_name=self._model_instance.provider)
|
||||
embedding_cache.set_embedding(embedding)
|
||||
db.session.add(embedding_cache)
|
||||
db.session.commit()
|
||||
except Exception as ex:
|
||||
db.session.rollback()
|
||||
logger.error('Failed to embed documents: ', ex)
|
||||
raise ex
|
||||
|
||||
return text_embeddings
|
||||
|
||||
|
@ -61,8 +85,6 @@ class CacheEmbedding(Embeddings):
|
|||
if embedding:
|
||||
redis_client.expire(embedding_cache_key, 600)
|
||||
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
|
||||
|
||||
|
||||
try:
|
||||
embedding_result = self._model_instance.invoke_text_embedding(
|
||||
texts=[text],
|
||||
|
|
|
@ -46,11 +46,11 @@ def init_app(app: Flask) -> Celery:
|
|||
beat_schedule = {
|
||||
'clean_embedding_cache_task': {
|
||||
'task': 'schedule.clean_embedding_cache_task.clean_embedding_cache_task',
|
||||
'schedule': timedelta(days=7),
|
||||
'schedule': timedelta(days=1),
|
||||
},
|
||||
'clean_unused_datasets_task': {
|
||||
'task': 'schedule.clean_unused_datasets_task.clean_unused_datasets_task',
|
||||
'schedule': timedelta(minutes=3),
|
||||
'schedule': timedelta(days=1),
|
||||
}
|
||||
}
|
||||
celery_app.conf.update(
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
"""add-embeddings-provider-name
|
||||
|
||||
Revision ID: a8d7385a7b66
|
||||
Revises: 17b5ab037c40
|
||||
Create Date: 2024-04-02 12:17:22.641525
|
||||
|
||||
"""
|
||||
import sqlalchemy as sa
|
||||
from alembic import op
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = 'a8d7385a7b66'
|
||||
down_revision = '17b5ab037c40'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('embeddings', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('provider_name', sa.String(length=40), server_default=sa.text("''::character varying"), nullable=False))
|
||||
batch_op.drop_constraint('embedding_hash_idx', type_='unique')
|
||||
batch_op.create_unique_constraint('embedding_hash_idx', ['model_name', 'hash', 'provider_name'])
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('embeddings', schema=None) as batch_op:
|
||||
batch_op.drop_constraint('embedding_hash_idx', type_='unique')
|
||||
batch_op.create_unique_constraint('embedding_hash_idx', ['model_name', 'hash'])
|
||||
batch_op.drop_column('provider_name')
|
||||
# ### end Alembic commands ###
|
|
@ -123,6 +123,7 @@ class Dataset(db.Model):
|
|||
normalized_dataset_id = dataset_id.replace("-", "_")
|
||||
return f'Vector_index_{normalized_dataset_id}_Node'
|
||||
|
||||
|
||||
class DatasetProcessRule(db.Model):
|
||||
__tablename__ = 'dataset_process_rules'
|
||||
__table_args__ = (
|
||||
|
@ -443,7 +444,8 @@ class DatasetKeywordTable(db.Model):
|
|||
id = db.Column(UUID, primary_key=True, server_default=db.text('uuid_generate_v4()'))
|
||||
dataset_id = db.Column(UUID, nullable=False, unique=True)
|
||||
keyword_table = db.Column(db.Text, nullable=False)
|
||||
data_source_type = db.Column(db.String(255), nullable=False, server_default=db.text("'database'::character varying"))
|
||||
data_source_type = db.Column(db.String(255), nullable=False,
|
||||
server_default=db.text("'database'::character varying"))
|
||||
|
||||
@property
|
||||
def keyword_table_dict(self):
|
||||
|
@ -457,6 +459,7 @@ class DatasetKeywordTable(db.Model):
|
|||
if isinstance(node_idxs, list):
|
||||
dct[keyword] = set(node_idxs)
|
||||
return dct
|
||||
|
||||
# get dataset
|
||||
dataset = Dataset.query.filter_by(
|
||||
id=self.dataset_id
|
||||
|
@ -481,7 +484,7 @@ class Embedding(db.Model):
|
|||
__tablename__ = 'embeddings'
|
||||
__table_args__ = (
|
||||
db.PrimaryKeyConstraint('id', name='embedding_pkey'),
|
||||
db.UniqueConstraint('model_name', 'hash', name='embedding_hash_idx')
|
||||
db.UniqueConstraint('model_name', 'hash', 'provider_name', name='embedding_hash_idx')
|
||||
)
|
||||
|
||||
id = db.Column(UUID, primary_key=True, server_default=db.text('uuid_generate_v4()'))
|
||||
|
@ -490,6 +493,8 @@ class Embedding(db.Model):
|
|||
hash = db.Column(db.String(64), nullable=False)
|
||||
embedding = db.Column(db.LargeBinary, nullable=False)
|
||||
created_at = db.Column(db.DateTime, nullable=False, server_default=db.text('CURRENT_TIMESTAMP(0)'))
|
||||
provider_name = db.Column(db.String(40), nullable=False,
|
||||
server_default=db.text("''::character varying"))
|
||||
|
||||
def set_embedding(self, embedding_data: list[float]):
|
||||
self.embedding = pickle.dumps(embedding_data, protocol=pickle.HIGHEST_PROTOCOL)
|
||||
|
|
Loading…
Reference in New Issue
Block a user