mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
Merge branch 'refactor/remove-extra-config-from-file' into deploy/dev
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
This commit is contained in:
commit
65366f188e
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -175,6 +175,7 @@ docker/volumes/pgvector/data/*
|
|||
docker/volumes/pgvecto_rs/data/*
|
||||
docker/volumes/couchbase/*
|
||||
docker/volumes/oceanbase/*
|
||||
!docker/volumes/oceanbase/init.d
|
||||
|
||||
docker/nginx/conf.d/default.conf
|
||||
docker/nginx/ssl/*
|
||||
|
|
|
@ -121,7 +121,7 @@ WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
|
|||
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
|
||||
|
||||
|
||||
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm
|
||||
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm, oceanbase
|
||||
VECTOR_STORE=weaviate
|
||||
|
||||
# Weaviate configuration
|
||||
|
@ -273,7 +273,7 @@ LINDORM_PASSWORD=admin
|
|||
OCEANBASE_VECTOR_HOST=127.0.0.1
|
||||
OCEANBASE_VECTOR_PORT=2881
|
||||
OCEANBASE_VECTOR_USER=root@test
|
||||
OCEANBASE_VECTOR_PASSWORD=
|
||||
OCEANBASE_VECTOR_PASSWORD=difyai123456
|
||||
OCEANBASE_VECTOR_DATABASE=test
|
||||
OCEANBASE_MEMORY_LIMIT=6G
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ from .error import FileTooLargeError, UnsupportedFileTypeError
|
|||
|
||||
class RemoteFileInfoApi(WebApiResource):
|
||||
@marshal_with(remote_file_info_fields)
|
||||
def get(self, url):
|
||||
def get(self, app_model, end_user, url):
|
||||
decoded_url = urllib.parse.unquote(url)
|
||||
resp = ssrf_proxy.head(decoded_url)
|
||||
if resp.status_code != httpx.codes.OK:
|
||||
|
|
22
api/core/workflow/nodes/iteration/exc.py
Normal file
22
api/core/workflow/nodes/iteration/exc.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
class IterationNodeError(ValueError):
|
||||
"""Base class for iteration node errors."""
|
||||
|
||||
|
||||
class IteratorVariableNotFoundError(IterationNodeError):
|
||||
"""Raised when the iterator variable is not found."""
|
||||
|
||||
|
||||
class InvalidIteratorValueError(IterationNodeError):
|
||||
"""Raised when the iterator value is invalid."""
|
||||
|
||||
|
||||
class StartNodeIdNotFoundError(IterationNodeError):
|
||||
"""Raised when the start node ID is not found."""
|
||||
|
||||
|
||||
class IterationGraphNotFoundError(IterationNodeError):
|
||||
"""Raised when the iteration graph is not found."""
|
||||
|
||||
|
||||
class IterationIndexNotFoundError(IterationNodeError):
|
||||
"""Raised when the iteration index is not found."""
|
|
@ -38,6 +38,15 @@ from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
|
|||
from core.workflow.nodes.iteration.entities import ErrorHandleMode, IterationNodeData
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
from .exc import (
|
||||
InvalidIteratorValueError,
|
||||
IterationGraphNotFoundError,
|
||||
IterationIndexNotFoundError,
|
||||
IterationNodeError,
|
||||
IteratorVariableNotFoundError,
|
||||
StartNodeIdNotFoundError,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.workflow.graph_engine.graph_engine import GraphEngine
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -69,7 +78,7 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
iterator_list_segment = self.graph_runtime_state.variable_pool.get(self.node_data.iterator_selector)
|
||||
|
||||
if not iterator_list_segment:
|
||||
raise ValueError(f"Iterator variable {self.node_data.iterator_selector} not found")
|
||||
raise IteratorVariableNotFoundError(f"Iterator variable {self.node_data.iterator_selector} not found")
|
||||
|
||||
if len(iterator_list_segment.value) == 0:
|
||||
yield RunCompletedEvent(
|
||||
|
@ -83,14 +92,14 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
iterator_list_value = iterator_list_segment.to_object()
|
||||
|
||||
if not isinstance(iterator_list_value, list):
|
||||
raise ValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.")
|
||||
raise InvalidIteratorValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.")
|
||||
|
||||
inputs = {"iterator_selector": iterator_list_value}
|
||||
|
||||
graph_config = self.graph_config
|
||||
|
||||
if not self.node_data.start_node_id:
|
||||
raise ValueError(f"field start_node_id in iteration {self.node_id} not found")
|
||||
raise StartNodeIdNotFoundError(f"field start_node_id in iteration {self.node_id} not found")
|
||||
|
||||
root_node_id = self.node_data.start_node_id
|
||||
|
||||
|
@ -98,7 +107,7 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=root_node_id)
|
||||
|
||||
if not iteration_graph:
|
||||
raise ValueError("iteration graph not found")
|
||||
raise IterationGraphNotFoundError("iteration graph not found")
|
||||
|
||||
variable_pool = self.graph_runtime_state.variable_pool
|
||||
|
||||
|
@ -222,9 +231,9 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
status=WorkflowNodeExecutionStatus.SUCCEEDED, outputs={"output": jsonable_encoder(outputs)}
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
except IterationNodeError as e:
|
||||
# iteration run failed
|
||||
logger.exception("Iteration run failed")
|
||||
logger.warning("Iteration run failed")
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
|
@ -272,7 +281,7 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=node_data.start_node_id)
|
||||
|
||||
if not iteration_graph:
|
||||
raise ValueError("iteration graph not found")
|
||||
raise IterationGraphNotFoundError("iteration graph not found")
|
||||
|
||||
for sub_node_id, sub_node_config in iteration_graph.node_id_config_mapping.items():
|
||||
if sub_node_config.get("data", {}).get("iteration_id") != node_id:
|
||||
|
@ -357,7 +366,7 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
next_index = int(current_index) + 1
|
||||
|
||||
if current_index is None:
|
||||
raise ValueError(f"iteration {self.node_id} current index not found")
|
||||
raise IterationIndexNotFoundError(f"iteration {self.node_id} current index not found")
|
||||
for event in rst:
|
||||
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id:
|
||||
event.in_iteration_id = self.node_id
|
||||
|
@ -484,8 +493,8 @@ class IterationNode(BaseNode[IterationNodeData]):
|
|||
pre_iteration_output=jsonable_encoder(current_iteration_output) if current_iteration_output else None,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Iteration run failed:{str(e)}")
|
||||
except IterationNodeError as e:
|
||||
logger.warning(f"Iteration run failed:{str(e)}")
|
||||
yield IterationRunFailedEvent(
|
||||
iteration_id=self.id,
|
||||
iteration_node_id=self.node_id,
|
||||
|
|
18
api/core/workflow/nodes/knowledge_retrieval/exc.py
Normal file
18
api/core/workflow/nodes/knowledge_retrieval/exc.py
Normal file
|
@ -0,0 +1,18 @@
|
|||
class KnowledgeRetrievalNodeError(ValueError):
|
||||
"""Base class for KnowledgeRetrievalNode errors."""
|
||||
|
||||
|
||||
class ModelNotExistError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model does not exist."""
|
||||
|
||||
|
||||
class ModelCredentialsNotInitializedError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model credentials are not initialized."""
|
||||
|
||||
|
||||
class ModelNotSupportedError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model is not supported."""
|
||||
|
||||
|
||||
class ModelQuotaExceededError(KnowledgeRetrievalNodeError):
|
||||
"""Raised when the model provider quota is exceeded."""
|
|
@ -8,7 +8,6 @@ from core.app.app_config.entities import DatasetRetrieveConfigEntity
|
|||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.entities.agent_entities import PlanningStrategy
|
||||
from core.entities.model_entities import ModelStatus
|
||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||
from core.model_manager import ModelInstance, ModelManager
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
|
@ -18,11 +17,19 @@ from core.variables import StringSegment
|
|||
from core.workflow.entities.node_entities import NodeRunResult
|
||||
from core.workflow.nodes.base import BaseNode
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
from .entities import KnowledgeRetrievalNodeData
|
||||
from .exc import (
|
||||
KnowledgeRetrievalNodeError,
|
||||
ModelCredentialsNotInitializedError,
|
||||
ModelNotExistError,
|
||||
ModelNotSupportedError,
|
||||
ModelQuotaExceededError,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
default_retrieval_model = {
|
||||
|
@ -61,8 +68,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.exception("Error when running knowledge retrieval node")
|
||||
except KnowledgeRetrievalNodeError as e:
|
||||
logger.warning("Error when running knowledge retrieval node")
|
||||
return NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error=str(e))
|
||||
|
||||
def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]:
|
||||
|
@ -295,14 +302,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
)
|
||||
|
||||
if provider_model is None:
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
raise ModelNotExistError(f"Model {model_name} not exist.")
|
||||
|
||||
if provider_model.status == ModelStatus.NO_CONFIGURE:
|
||||
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
|
||||
raise ModelCredentialsNotInitializedError(f"Model {model_name} credentials is not initialized.")
|
||||
elif provider_model.status == ModelStatus.NO_PERMISSION:
|
||||
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
|
||||
raise ModelNotSupportedError(f"Dify Hosted OpenAI {model_name} currently not support.")
|
||||
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
|
||||
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
|
||||
raise ModelQuotaExceededError(f"Model provider {provider_name} quota exceeded.")
|
||||
|
||||
# model config
|
||||
completion_params = node_data.single_retrieval_config.model.completion_params
|
||||
|
@ -314,12 +321,12 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
|
|||
# get model mode
|
||||
model_mode = node_data.single_retrieval_config.model.mode
|
||||
if not model_mode:
|
||||
raise ValueError("LLM mode is required.")
|
||||
raise ModelNotExistError("LLM mode is required.")
|
||||
|
||||
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
|
||||
|
||||
if not model_schema:
|
||||
raise ValueError(f"Model {model_name} not exist.")
|
||||
raise ModelNotExistError(f"Model {model_name} not exist.")
|
||||
|
||||
return model_instance, ModelConfigWithCredentialsEntity(
|
||||
provider=provider_name,
|
||||
|
|
6
api/core/workflow/nodes/question_classifier/exc.py
Normal file
6
api/core/workflow/nodes/question_classifier/exc.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
class QuestionClassifierNodeError(ValueError):
|
||||
"""Base class for QuestionClassifierNode errors."""
|
||||
|
||||
|
||||
class InvalidModelTypeError(QuestionClassifierNodeError):
|
||||
"""Raised when the model is not a Large Language Model."""
|
|
@ -4,6 +4,7 @@ from collections.abc import Mapping, Sequence
|
|||
from typing import TYPE_CHECKING, Any, Optional, cast
|
||||
|
||||
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
|
||||
from core.llm_generator.output_parser.errors import OutputParserError
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole
|
||||
|
@ -24,6 +25,7 @@ from libs.json_in_md_parser import parse_and_check_json_markdown
|
|||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
from .entities import QuestionClassifierNodeData
|
||||
from .exc import InvalidModelTypeError
|
||||
from .template_prompts import (
|
||||
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_1,
|
||||
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_2,
|
||||
|
@ -124,7 +126,7 @@ class QuestionClassifierNode(LLMNode):
|
|||
category_name = classes_map[category_id_result]
|
||||
category_id = category_id_result
|
||||
|
||||
except Exception:
|
||||
except OutputParserError:
|
||||
logging.error(f"Failed to parse result text: {result_text}")
|
||||
try:
|
||||
process_data = {
|
||||
|
@ -309,4 +311,4 @@ class QuestionClassifierNode(LLMNode):
|
|||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Model mode {model_mode} not support.")
|
||||
raise InvalidModelTypeError(f"Model mode {model_mode} not support.")
|
||||
|
|
16
api/core/workflow/nodes/tool/exc.py
Normal file
16
api/core/workflow/nodes/tool/exc.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
class ToolNodeError(ValueError):
|
||||
"""Base exception for tool node errors."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ToolParameterError(ToolNodeError):
|
||||
"""Exception raised for errors in tool parameters."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ToolFileError(ToolNodeError):
|
||||
"""Exception raised for errors related to tool files."""
|
||||
|
||||
pass
|
|
@ -6,7 +6,7 @@ from sqlalchemy import select
|
|||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
|
||||
from core.file.models import File, FileTransferMethod, FileType
|
||||
from core.file import File, FileTransferMethod, FileType
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.tools.tool_manager import ToolManager
|
||||
|
@ -15,13 +15,19 @@ from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResu
|
|||
from core.workflow.entities.variable_pool import VariablePool
|
||||
from core.workflow.nodes.base import BaseNode
|
||||
from core.workflow.nodes.enums import NodeType
|
||||
from core.workflow.nodes.tool.entities import ToolNodeData
|
||||
from core.workflow.utils.variable_template_parser import VariableTemplateParser
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models import ToolFile
|
||||
from models.workflow import WorkflowNodeExecutionStatus
|
||||
|
||||
from .entities import ToolNodeData
|
||||
from .exc import (
|
||||
ToolFileError,
|
||||
ToolNodeError,
|
||||
ToolParameterError,
|
||||
)
|
||||
|
||||
|
||||
class ToolNode(BaseNode[ToolNodeData]):
|
||||
"""
|
||||
|
@ -43,7 +49,7 @@ class ToolNode(BaseNode[ToolNodeData]):
|
|||
tool_runtime = ToolManager.get_workflow_tool_runtime(
|
||||
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from
|
||||
)
|
||||
except Exception as e:
|
||||
except ToolNodeError as e:
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
inputs={},
|
||||
|
@ -76,7 +82,7 @@ class ToolNode(BaseNode[ToolNodeData]):
|
|||
workflow_call_depth=self.workflow_call_depth,
|
||||
thread_pool_id=self.thread_pool_id,
|
||||
)
|
||||
except Exception as e:
|
||||
except ToolNodeError as e:
|
||||
return NodeRunResult(
|
||||
status=WorkflowNodeExecutionStatus.FAILED,
|
||||
inputs=parameters_for_log,
|
||||
|
@ -134,13 +140,13 @@ class ToolNode(BaseNode[ToolNodeData]):
|
|||
if tool_input.type == "variable":
|
||||
variable = variable_pool.get(tool_input.value)
|
||||
if variable is None:
|
||||
raise ValueError(f"variable {tool_input.value} not exists")
|
||||
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
|
||||
parameter_value = variable.value
|
||||
elif tool_input.type in {"mixed", "constant"}:
|
||||
segment_group = variable_pool.convert_template(str(tool_input.value))
|
||||
parameter_value = segment_group.log if for_log else segment_group.text
|
||||
else:
|
||||
raise ValueError(f"unknown tool input type '{tool_input.type}'")
|
||||
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
|
||||
result[parameter_name] = parameter_value
|
||||
|
||||
return result
|
||||
|
@ -182,7 +188,7 @@ class ToolNode(BaseNode[ToolNodeData]):
|
|||
stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
|
||||
tool_file = session.scalar(stmt)
|
||||
if tool_file is None:
|
||||
raise ValueError(f"tool file {tool_file_id} not exists")
|
||||
raise ToolFileError(f"Tool file {tool_file_id} does not exist")
|
||||
|
||||
mapping = {
|
||||
"tool_file_id": tool_file_id,
|
||||
|
@ -221,7 +227,7 @@ class ToolNode(BaseNode[ToolNodeData]):
|
|||
stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
|
||||
tool_file = session.scalar(stmt)
|
||||
if tool_file is None:
|
||||
raise ValueError(f"tool file {tool_file_id} not exists")
|
||||
raise ToolFileError(f"Tool file {tool_file_id} does not exist")
|
||||
if "." in url:
|
||||
extension = "." + url.split("/")[-1].split(".")[1]
|
||||
else:
|
||||
|
|
|
@ -9,6 +9,7 @@ def parse_json_markdown(json_string: str) -> dict:
|
|||
starts = ["```json", "```", "``", "`", "{"]
|
||||
ends = ["```", "``", "`", "}"]
|
||||
end_index = -1
|
||||
start_index = 0
|
||||
for s in starts:
|
||||
start_index = json_string.find(s)
|
||||
if start_index != -1:
|
||||
|
@ -24,7 +25,6 @@ def parse_json_markdown(json_string: str) -> dict:
|
|||
break
|
||||
if start_index != -1 and end_index != -1 and start_index < end_index:
|
||||
extracted_content = json_string[start_index:end_index].strip()
|
||||
print("content:", extracted_content, start_index, end_index)
|
||||
parsed = json.loads(extracted_content)
|
||||
else:
|
||||
raise Exception("Could not find JSON block in the output.")
|
||||
|
|
|
@ -374,7 +374,7 @@ SUPABASE_URL=your-server-url
|
|||
# ------------------------------
|
||||
|
||||
# The type of vector store to use.
|
||||
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`.
|
||||
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`, `oceanbase`.
|
||||
VECTOR_STORE=weaviate
|
||||
|
||||
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
|
||||
|
@ -537,10 +537,10 @@ LINDORM_USERNAME=username
|
|||
LINDORM_PASSWORD=password
|
||||
|
||||
# OceanBase Vector configuration, only available when VECTOR_STORE is `oceanbase`
|
||||
OCEANBASE_VECTOR_HOST=oceanbase-vector
|
||||
OCEANBASE_VECTOR_HOST=oceanbase
|
||||
OCEANBASE_VECTOR_PORT=2881
|
||||
OCEANBASE_VECTOR_USER=root@test
|
||||
OCEANBASE_VECTOR_PASSWORD=
|
||||
OCEANBASE_VECTOR_PASSWORD=difyai123456
|
||||
OCEANBASE_VECTOR_DATABASE=test
|
||||
OCEANBASE_MEMORY_LIMIT=6G
|
||||
|
||||
|
|
|
@ -266,8 +266,9 @@ x-shared-env: &shared-api-worker-env
|
|||
OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-http://oceanbase-vector}
|
||||
OCEANBASE_VECTOR_PORT: ${OCEANBASE_VECTOR_PORT:-2881}
|
||||
OCEANBASE_VECTOR_USER: ${OCEANBASE_VECTOR_USER:-root@test}
|
||||
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-""}
|
||||
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
|
||||
OCEANBASE_VECTOR_DATABASE: ${OCEANBASE_VECTOR_DATABASE:-test}
|
||||
OCEANBASE_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
|
||||
OCEANBASE_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
|
||||
|
||||
services:
|
||||
|
@ -597,16 +598,21 @@ services:
|
|||
IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE}
|
||||
|
||||
# OceanBase vector database
|
||||
oceanbase-vector:
|
||||
oceanbase:
|
||||
image: quay.io/oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
|
||||
profiles:
|
||||
- oceanbase-vector
|
||||
- oceanbase
|
||||
restart: always
|
||||
volumes:
|
||||
- ./volumes/oceanbase/data:/root/ob
|
||||
- ./volumes/oceanbase/conf:/root/.obd/cluster
|
||||
- ./volumes/oceanbase/init.d:/root/boot/init.d
|
||||
environment:
|
||||
OB_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
|
||||
OB_SYS_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
|
||||
OB_TENANT_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
|
||||
OB_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
|
||||
OB_SERVER_IP: '127.0.0.1'
|
||||
|
||||
# Oracle vector database
|
||||
oracle:
|
||||
|
|
1
docker/volumes/oceanbase/init.d/vec_memory.sql
Normal file
1
docker/volumes/oceanbase/init.d/vec_memory.sql
Normal file
|
@ -0,0 +1 @@
|
|||
ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30;
|
Loading…
Reference in New Issue
Block a user