feat: add gpustack model provider (#10158)

This commit is contained in:
Lawrence Li 2024-11-01 17:23:30 +08:00 committed by GitHub
parent 3c85136279
commit 76b0328eb1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 705 additions and 1 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 277 KiB

View File

@ -0,0 +1,15 @@
<svg width="68" height="24" viewBox="0 0 68 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<g id="Gemini">
<path id="Union" fill-rule="evenodd" clip-rule="evenodd" d="M50.6875 4.37014C48.3498 4.59292 46.5349 6.41319 46.3337 8.72764C46.1446 6.44662 44.2677 4.56074 41.9805 4.3737C44.2762 4.1997 46.152 2.28299 46.3373 0C46.4882 2.28911 48.405 4.20047 50.6875 4.37014ZM15.4567 9.41141L13.9579 10.9076C9.92941 6.64892 2.69298 9.97287 3.17317 15.8112C3.22394 23.108 14.5012 24.4317 15.3628 16.8809H9.52096L9.50061 14.9149H17.3595C18.8163 23.1364 8.44367 27.0292 3.19453 21.238C0.847044 18.7556 0.363651 14.7682 1.83717 11.7212C4.1129 6.62089 11.6505 5.29845 15.4567 9.41141ZM45.5915 23.5989H47.6945C47.6944 22.9155 47.6945 22.2307 47.6946 21.5452V21.5325C47.6948 19.8907 47.695 18.2453 47.6924 16.6072C47.6914 15.9407 47.6161 15.2823 47.4024 14.647C46.4188 11.2828 41.4255 11.4067 39.8332 14.214C38.5637 11.4171 34.4009 11.5236 32.8538 14.0084L32.8082 13.9976V12.4806L32.4233 12.4804H32.4224C31.8687 12.4801 31.3324 12.4798 30.7949 12.4811V23.5848L32.8977 23.5672C32.8981 22.9411 32.8979 22.3122 32.8977 21.6822V21.6812V21.6802V21.6791V21.6781V21.6771V21.676V21.676V21.6759V21.6758V21.6757V21.6757V21.6756C32.8973 20.204 32.8969 18.7261 32.904 17.2614C32.8889 15.3646 34.5674 13.5687 36.5358 14.124C37.7794 14.3298 38.1851 15.6148 38.1761 16.7257C38.1821 17.7019 38.18 18.6824 38.178 19.6633V19.6638C38.1752 20.9756 38.1724 22.2881 38.1891 23.5919L40.2846 23.5731C40.2929 22.7511 40.2881 21.9245 40.2832 21.0966C40.2753 19.7402 40.2674 18.3805 40.317 17.0328C40.4418 15.2122 42.0141 13.6186 43.9064 14.1168C45.2685 14.3231 45.6136 15.7748 45.5882 16.9545C45.5938 18.4959 45.5929 20.0492 45.5921 21.5968V21.5991V21.6014V21.6037V21.606V21.6083V21.6106C45.5917 22.2749 45.5913 22.9382 45.5915 23.5989ZM20.6167 18.4408C20.5625 21.9486 25.2121 23.6996 27.2993 20.0558L29.1566 20.9592C27.8157 23.7067 24.2337 24.7424 21.5381 23.4213C18.0052 21.7253 17.41 16.5007 20.0334 13.7517C21.4609 12.1752 23.7291 11.7901 25.7206 12.3653C28.3408 13.1257 29.4974 15.8937 29.326 18.4399C27.5547 18.4415 25.7971 18.4412 24.0364 18.4409C22.8993 18.4407 21.7609 18.4405 20.6167 18.4408ZM27.1041 16.6957C26.7048 13.1033 21.2867 13.2256 20.7494 16.6957H27.1041ZM53.543 23.5999H55.6206L55.6206 22.4361C55.6205 20.7877 55.6205 19.1443 55.6207 17.4939C55.6208 16.8853 55.7234 16.297 56.0063 15.7531C56.6115 14.3862 58.1745 13.7002 59.5927 14.1774C60.7512 14.4455 61.2852 15.6069 61.2762 16.7154C61.2774 18.3497 61.2771 19.9826 61.2769 21.6162V21.6166V21.617V21.6174V21.6179L61.2766 23.6007H63.3698C63.3913 22.0924 63.3869 20.584 63.3826 19.0755V19.0754V19.0753V19.0753V19.0752C63.3799 18.1682 63.3773 17.2612 63.3803 16.3541C63.3796 15.8622 63.3103 15.3765 63.1698 14.9052C62.3248 11.5142 57.3558 11.2385 55.5828 14.0038L55.5336 13.9905V12.4917H53.539C53.4898 12.7313 53.4934 23.4113 53.543 23.5999ZM49.6211 12.4944H51.7065V23.5994H49.6211V12.4944ZM65.1035 23.5991H67.1831C67.2367 23.2198 67.2133 12.6566 67.1634 12.4983H65.1035V23.5991ZM52.1504 8.67829C52.1709 10.4847 49.2418 10.7058 49.1816 8.65714C49.2189 6.5948 52.2437 6.81331 52.1504 8.67829ZM66.1387 10.1324C64.2712 10.1609 64.1316 7.19881 66.1559 7.17114C68.1709 7.19817 68.0215 10.2087 66.1387 10.1324Z" fill="url(#paint0_linear_14286_118464)"/>
</g>
<defs>
<linearGradient id="paint0_linear_14286_118464" x1="-2" y1="0.999998" x2="67.9999" y2="27.5002" gradientUnits="userSpaceOnUse">
<stop stop-color="#7798E0"/>
<stop offset="0.210002" stop-color="#086FFF"/>
<stop offset="0.345945" stop-color="#086FFF"/>
<stop offset="0.591777" stop-color="#479AFF"/>
<stop offset="0.895892" stop-color="#B7C4FA"/>
<stop offset="1" stop-color="#B5C5F9"/>
</linearGradient>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

View File

@ -0,0 +1,11 @@
<svg width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect width="24" height="24" rx="6" fill="url(#paint0_linear_7301_16076)"/>
<path d="M20 12.0116C15.7043 12.42 12.3692 15.757 11.9995 20C11.652 15.8183 8.20301 12.361 4 12.0181C8.21855 11.6991 11.6656 8.1853 12.006 4C12.2833 8.19653 15.8057 11.7005 20 12.0116Z" fill="white" fill-opacity="0.88"/>
<defs>
<linearGradient id="paint0_linear_7301_16076" x1="-9" y1="29.5" x2="19.4387" y2="1.43791" gradientUnits="userSpaceOnUse">
<stop offset="0.192878" stop-color="#1C7DFF"/>
<stop offset="0.520213" stop-color="#1C69FF"/>
<stop offset="1" stop-color="#F0DCD6"/>
</linearGradient>
</defs>
</svg>

After

Width:  |  Height:  |  Size: 689 B

View File

@ -0,0 +1,10 @@
import logging
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
logger = logging.getLogger(__name__)
class GPUStackProvider(ModelProvider):
def validate_provider_credentials(self, credentials: dict) -> None:
pass

View File

@ -0,0 +1,120 @@
provider: gpustack
label:
en_US: GPUStack
icon_small:
en_US: icon_s_en.png
icon_large:
en_US: icon_l_en.png
supported_model_types:
- llm
- text-embedding
- rerank
configurate_methods:
- customizable-model
model_credential_schema:
model:
label:
en_US: Model Name
zh_Hans: 模型名称
placeholder:
en_US: Enter your model name
zh_Hans: 输入模型名称
credential_form_schemas:
- variable: endpoint_url
label:
zh_Hans: 服务器地址
en_US: Server URL
type: text-input
required: true
placeholder:
zh_Hans: 输入 GPUStack 的服务器地址,如 http://192.168.1.100
en_US: Enter the GPUStack server URL, e.g. http://192.168.1.100
- variable: api_key
label:
en_US: API Key
type: secret-input
required: true
placeholder:
zh_Hans: 输入您的 API Key
en_US: Enter your API Key
- variable: mode
show_on:
- variable: __model_type
value: llm
label:
en_US: Completion mode
type: select
required: false
default: chat
placeholder:
zh_Hans: 选择补全类型
en_US: Select completion type
options:
- value: completion
label:
en_US: Completion
zh_Hans: 补全
- value: chat
label:
en_US: Chat
zh_Hans: 对话
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
type: text-input
default: "8192"
placeholder:
zh_Hans: 输入您的模型上下文长度
en_US: Enter your Model context size
- variable: max_tokens_to_sample
label:
zh_Hans: 最大 token 上限
en_US: Upper bound for max tokens
show_on:
- variable: __model_type
value: llm
default: "8192"
type: text-input
- variable: function_calling_type
show_on:
- variable: __model_type
value: llm
label:
en_US: Function calling
type: select
required: false
default: no_call
options:
- value: function_call
label:
en_US: Function Call
zh_Hans: Function Call
- value: tool_call
label:
en_US: Tool Call
zh_Hans: Tool Call
- value: no_call
label:
en_US: Not Support
zh_Hans: 不支持
- variable: vision_support
show_on:
- variable: __model_type
value: llm
label:
zh_Hans: Vision 支持
en_US: Vision Support
type: select
required: false
default: no_support
options:
- value: support
label:
en_US: Support
zh_Hans: 支持
- value: no_support
label:
en_US: Not Support
zh_Hans: 不支持

View File

@ -0,0 +1,45 @@
from collections.abc import Generator
from yarl import URL
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import (
OAIAPICompatLargeLanguageModel,
)
class GPUStackLanguageModel(OAIAPICompatLargeLanguageModel):
def _invoke(
self,
model: str,
credentials: dict,
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: list[PromptMessageTool] | None = None,
stop: list[str] | None = None,
stream: bool = True,
user: str | None = None,
) -> LLMResult | Generator:
return super()._invoke(
model,
credentials,
prompt_messages,
model_parameters,
tools,
stop,
stream,
user,
)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")
credentials["mode"] = "chat"

View File

@ -0,0 +1,146 @@
from json import dumps
from typing import Optional
import httpx
from requests import post
from yarl import URL
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
FetchFrom,
ModelPropertyKey,
ModelType,
)
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
class GPUStackRerankModel(RerankModel):
"""
Model class for GPUStack rerank model.
"""
def _invoke(
self,
model: str,
credentials: dict,
query: str,
docs: list[str],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> RerankResult:
"""
Invoke rerank model
:param model: model name
:param credentials: model credentials
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n documents to return
:param user: unique user id
:return: rerank result
"""
if len(docs) == 0:
return RerankResult(model=model, docs=[])
endpoint_url = credentials["endpoint_url"]
headers = {
"Authorization": f"Bearer {credentials.get('api_key')}",
"Content-Type": "application/json",
}
data = {"model": model, "query": query, "documents": docs, "top_n": top_n}
try:
response = post(
str(URL(endpoint_url) / "v1" / "rerank"),
headers=headers,
data=dumps(data),
timeout=10,
)
response.raise_for_status()
results = response.json()
rerank_documents = []
for result in results["results"]:
index = result["index"]
if "document" in result:
text = result["document"]["text"]
else:
text = docs[index]
rerank_document = RerankDocument(
index=index,
text=text,
score=result["relevance_score"],
)
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)
return RerankResult(model=model, docs=rerank_documents)
except httpx.HTTPStatusError as e:
raise InvokeServerUnavailableError(str(e))
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(
model=model,
credentials=credentials,
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
"""
return {
InvokeConnectionError: [httpx.ConnectError],
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
InvokeRateLimitError: [],
InvokeAuthorizationError: [httpx.HTTPStatusError],
InvokeBadRequestError: [httpx.RequestError],
}
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.RERANK,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={ModelPropertyKey.CONTEXT_SIZE: int(credentials.get("context_size"))},
)
return entity

View File

@ -0,0 +1,35 @@
from typing import Optional
from yarl import URL
from core.entities.embedding_type import EmbeddingInputType
from core.model_runtime.entities.text_embedding_entities import (
TextEmbeddingResult,
)
from core.model_runtime.model_providers.openai_api_compatible.text_embedding.text_embedding import (
OAICompatEmbeddingModel,
)
class GPUStackTextEmbeddingModel(OAICompatEmbeddingModel):
"""
Model class for GPUStack text embedding model.
"""
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
return super()._invoke(model, credentials, texts, user, input_type)
def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)
@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials["endpoint_url"] = str(URL(credentials["endpoint_url"]) / "v1-openai")

View File

@ -89,5 +89,9 @@ VESSL_AI_MODEL_NAME=
VESSL_AI_API_KEY=
VESSL_AI_ENDPOINT_URL=
# GPUStack Credentials
GPUSTACK_SERVER_URL=
GPUSTACK_API_KEY=
# Gitee AI Credentials
GITEE_AI_API_KEY=
GITEE_AI_API_KEY=

View File

@ -0,0 +1,49 @@
import os
import pytest
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.gpustack.text_embedding.text_embedding import (
GPUStackTextEmbeddingModel,
)
def test_validate_credentials():
model = GPUStackTextEmbeddingModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="bge-m3",
credentials={
"endpoint_url": "invalid_url",
"api_key": "invalid_api_key",
},
)
model.validate_credentials(
model="bge-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
},
)
def test_invoke_model():
model = GPUStackTextEmbeddingModel()
result = model.invoke(
model="bge-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"context_size": 8192,
},
texts=["hello", "world"],
user="abc-123",
)
assert isinstance(result, TextEmbeddingResult)
assert len(result.embeddings) == 2
assert result.usage.total_tokens == 7

View File

@ -0,0 +1,162 @@
import os
from collections.abc import Generator
import pytest
from core.model_runtime.entities.llm_entities import (
LLMResult,
LLMResultChunk,
LLMResultChunkDelta,
)
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageTool,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.gpustack.llm.llm import GPUStackLanguageModel
def test_validate_credentials_for_chat_model():
model = GPUStackLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="llama-3.2-1b-instruct",
credentials={
"endpoint_url": "invalid_url",
"api_key": "invalid_api_key",
"mode": "chat",
},
)
model.validate_credentials(
model="llama-3.2-1b-instruct",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "chat",
},
)
def test_invoke_completion_model():
model = GPUStackLanguageModel()
response = model.invoke(
model="llama-3.2-1b-instruct",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "completion",
},
prompt_messages=[UserPromptMessage(content="ping")],
model_parameters={"temperature": 0.7, "top_p": 1.0, "max_tokens": 10},
stop=[],
user="abc-123",
stream=False,
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
def test_invoke_chat_model():
model = GPUStackLanguageModel()
response = model.invoke(
model="llama-3.2-1b-instruct",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "chat",
},
prompt_messages=[UserPromptMessage(content="ping")],
model_parameters={"temperature": 0.7, "top_p": 1.0, "max_tokens": 10},
stop=[],
user="abc-123",
stream=False,
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
def test_invoke_stream_chat_model():
model = GPUStackLanguageModel()
response = model.invoke(
model="llama-3.2-1b-instruct",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "chat",
},
prompt_messages=[UserPromptMessage(content="Hello World!")],
model_parameters={"temperature": 0.7, "top_p": 1.0, "max_tokens": 10},
stop=["you"],
stream=True,
user="abc-123",
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
def test_get_num_tokens():
model = GPUStackLanguageModel()
num_tokens = model.get_num_tokens(
model="????",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "chat",
},
prompt_messages=[
SystemPromptMessage(
content="You are a helpful AI assistant.",
),
UserPromptMessage(content="Hello World!"),
],
tools=[
PromptMessageTool(
name="get_current_weather",
description="Get the current weather in a given location",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["c", "f"]},
},
"required": ["location"],
},
)
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 80
num_tokens = model.get_num_tokens(
model="????",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
"mode": "chat",
},
prompt_messages=[UserPromptMessage(content="Hello World!")],
)
assert isinstance(num_tokens, int)
assert num_tokens == 10

View File

@ -0,0 +1,107 @@
import os
import pytest
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.gpustack.rerank.rerank import (
GPUStackRerankModel,
)
def test_validate_credentials_for_rerank_model():
model = GPUStackRerankModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="bge-reranker-v2-m3",
credentials={
"endpoint_url": "invalid_url",
"api_key": "invalid_api_key",
},
)
model.validate_credentials(
model="bge-reranker-v2-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
},
)
def test_invoke_rerank_model():
model = GPUStackRerankModel()
response = model.invoke(
model="bge-reranker-v2-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
},
query="Organic skincare products for sensitive skin",
docs=[
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"Yoga mats made from recycled materials",
],
top_n=3,
score_threshold=-0.75,
user="abc-123",
)
assert isinstance(response, RerankResult)
assert len(response.docs) == 3
def test__invoke():
model = GPUStackRerankModel()
# Test case 1: Empty docs
result = model._invoke(
model="bge-reranker-v2-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
},
query="Organic skincare products for sensitive skin",
docs=[],
top_n=3,
score_threshold=0.75,
user="abc-123",
)
assert isinstance(result, RerankResult)
assert len(result.docs) == 0
# Test case 2: Expected docs
result = model._invoke(
model="bge-reranker-v2-m3",
credentials={
"endpoint_url": os.environ.get("GPUSTACK_SERVER_URL"),
"api_key": os.environ.get("GPUSTACK_API_KEY"),
},
query="Organic skincare products for sensitive skin",
docs=[
"Eco-friendly kitchenware for modern homes",
"Biodegradable cleaning supplies for eco-conscious consumers",
"Organic cotton baby clothes for sensitive skin",
"Natural organic skincare range for sensitive skin",
"Tech gadgets for smart homes: 2024 edition",
"Sustainable gardening tools and compost solutions",
"Sensitive skin-friendly facial cleansers and toners",
"Organic food wraps and storage solutions",
"Yoga mats made from recycled materials",
],
top_n=3,
score_threshold=-0.75,
user="abc-123",
)
assert isinstance(result, RerankResult)
assert len(result.docs) == 3
assert all(isinstance(doc, RerankDocument) for doc in result.docs)