mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat: remove langchain from output parsers (#3473)
This commit is contained in:
parent
12f1ce4794
commit
8811677154
|
@ -1,19 +1,8 @@
|
|||
import enum
|
||||
from typing import Any, cast
|
||||
from typing import Any
|
||||
|
||||
from langchain.schema import AIMessage, BaseMessage, FunctionMessage, HumanMessage, SystemMessage
|
||||
from pydantic import BaseModel
|
||||
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
ImagePromptMessageContent,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
|
||||
|
||||
class PromptMessageFileType(enum.Enum):
|
||||
IMAGE = 'image'
|
||||
|
@ -38,98 +27,3 @@ class ImagePromptMessageFile(PromptMessageFile):
|
|||
|
||||
type: PromptMessageFileType = PromptMessageFileType.IMAGE
|
||||
detail: DETAIL = DETAIL.LOW
|
||||
|
||||
|
||||
class LCHumanMessageWithFiles(HumanMessage):
|
||||
# content: Union[str, list[Union[str, Dict]]]
|
||||
content: str
|
||||
files: list[PromptMessageFile]
|
||||
|
||||
|
||||
def lc_messages_to_prompt_messages(messages: list[BaseMessage]) -> list[PromptMessage]:
|
||||
prompt_messages = []
|
||||
for message in messages:
|
||||
if isinstance(message, HumanMessage):
|
||||
if isinstance(message, LCHumanMessageWithFiles):
|
||||
file_prompt_message_contents = []
|
||||
for file in message.files:
|
||||
if file.type == PromptMessageFileType.IMAGE:
|
||||
file = cast(ImagePromptMessageFile, file)
|
||||
file_prompt_message_contents.append(ImagePromptMessageContent(
|
||||
data=file.data,
|
||||
detail=ImagePromptMessageContent.DETAIL.HIGH
|
||||
if file.detail.value == "high" else ImagePromptMessageContent.DETAIL.LOW
|
||||
))
|
||||
|
||||
prompt_message_contents = [TextPromptMessageContent(data=message.content)]
|
||||
prompt_message_contents.extend(file_prompt_message_contents)
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=message.content))
|
||||
elif isinstance(message, AIMessage):
|
||||
message_kwargs = {
|
||||
'content': message.content
|
||||
}
|
||||
|
||||
if 'function_call' in message.additional_kwargs:
|
||||
message_kwargs['tool_calls'] = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=message.additional_kwargs['function_call']['id'],
|
||||
type='function',
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=message.additional_kwargs['function_call']['name'],
|
||||
arguments=message.additional_kwargs['function_call']['arguments']
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
prompt_messages.append(AssistantPromptMessage(**message_kwargs))
|
||||
elif isinstance(message, SystemMessage):
|
||||
prompt_messages.append(SystemPromptMessage(content=message.content))
|
||||
elif isinstance(message, FunctionMessage):
|
||||
prompt_messages.append(ToolPromptMessage(content=message.content, tool_call_id=message.name))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
|
||||
def prompt_messages_to_lc_messages(prompt_messages: list[PromptMessage]) -> list[BaseMessage]:
|
||||
messages = []
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, str):
|
||||
messages.append(HumanMessage(content=prompt_message.content))
|
||||
else:
|
||||
message_contents = []
|
||||
for content in prompt_message.content:
|
||||
if isinstance(content, TextPromptMessageContent):
|
||||
message_contents.append(content.data)
|
||||
elif isinstance(content, ImagePromptMessageContent):
|
||||
message_contents.append({
|
||||
'type': 'image',
|
||||
'data': content.data,
|
||||
'detail': content.detail.value
|
||||
})
|
||||
|
||||
messages.append(HumanMessage(content=message_contents))
|
||||
elif isinstance(prompt_message, AssistantPromptMessage):
|
||||
message_kwargs = {
|
||||
'content': prompt_message.content
|
||||
}
|
||||
|
||||
if prompt_message.tool_calls:
|
||||
message_kwargs['additional_kwargs'] = {
|
||||
'function_call': {
|
||||
'id': prompt_message.tool_calls[0].id,
|
||||
'name': prompt_message.tool_calls[0].function.name,
|
||||
'arguments': prompt_message.tool_calls[0].function.arguments
|
||||
}
|
||||
}
|
||||
|
||||
messages.append(AIMessage(**message_kwargs))
|
||||
elif isinstance(prompt_message, SystemPromptMessage):
|
||||
messages.append(SystemMessage(content=prompt_message.content))
|
||||
elif isinstance(prompt_message, ToolPromptMessage):
|
||||
messages.append(FunctionMessage(name=prompt_message.tool_call_id, content=prompt_message.content))
|
||||
|
||||
return messages
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
import json
|
||||
import logging
|
||||
|
||||
from langchain.schema import OutputParserException
|
||||
|
||||
from core.llm_generator.output_parser.errors import OutputParserException
|
||||
from core.llm_generator.output_parser.rule_config_generator import RuleConfigGeneratorOutputParser
|
||||
from core.llm_generator.output_parser.suggested_questions_after_answer import SuggestedQuestionsAfterAnswerOutputParser
|
||||
from core.llm_generator.prompts import CONVERSATION_TITLE_PROMPT, GENERATOR_QA_PROMPT
|
||||
|
|
2
api/core/llm_generator/output_parser/errors.py
Normal file
2
api/core/llm_generator/output_parser/errors.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
class OutputParserException(Exception):
|
||||
pass
|
|
@ -1,12 +1,11 @@
|
|||
from typing import Any
|
||||
|
||||
from langchain.schema import BaseOutputParser, OutputParserException
|
||||
|
||||
from core.llm_generator.output_parser.errors import OutputParserException
|
||||
from core.llm_generator.prompts import RULE_CONFIG_GENERATE_TEMPLATE
|
||||
from libs.json_in_md_parser import parse_and_check_json_markdown
|
||||
|
||||
|
||||
class RuleConfigGeneratorOutputParser(BaseOutputParser):
|
||||
class RuleConfigGeneratorOutputParser:
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
return RULE_CONFIG_GENERATE_TEMPLATE
|
||||
|
|
|
@ -2,12 +2,10 @@ import json
|
|||
import re
|
||||
from typing import Any
|
||||
|
||||
from langchain.schema import BaseOutputParser
|
||||
|
||||
from core.llm_generator.prompts import SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT
|
||||
|
||||
|
||||
class SuggestedQuestionsAfterAnswerOutputParser(BaseOutputParser):
|
||||
class SuggestedQuestionsAfterAnswerOutputParser:
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
return SUGGESTED_QUESTIONS_AFTER_ANSWER_INSTRUCTION_PROMPT
|
||||
|
|
|
@ -13,17 +13,6 @@ class TwilioAPIWrapper(BaseModel):
|
|||
and the environment variables ``TWILIO_ACCOUNT_SID``, ``TWILIO_AUTH_TOKEN``, and
|
||||
``TWILIO_FROM_NUMBER``, or pass `account_sid`, `auth_token`, and `from_number` as
|
||||
named parameters to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.utilities.twilio import TwilioAPIWrapper
|
||||
twilio = TwilioAPIWrapper(
|
||||
account_sid="ACxxx",
|
||||
auth_token="xxx",
|
||||
from_number="+10123456789"
|
||||
)
|
||||
twilio.run('test', '+12484345508')
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import json
|
||||
|
||||
from langchain.schema import OutputParserException
|
||||
from core.llm_generator.output_parser.errors import OutputParserException
|
||||
|
||||
|
||||
def parse_json_markdown(json_string: str) -> dict:
|
||||
|
|
Loading…
Reference in New Issue
Block a user