mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
Add VESSL AI OpenAI API-compatible model provider and LLM model (#9474)
Co-authored-by: moon <moon@vessl.ai>
This commit is contained in:
parent
f674de4f5d
commit
8d5456b6d0
Binary file not shown.
After Width: | Height: | Size: 11 KiB |
|
@ -0,0 +1,3 @@
|
|||
<svg width="1200" height="925" viewBox="0 0 1200 925" fill="none" xmlns="http://www.w3.org/2000/svg">
|
||||
<path d="M780.152 250.999L907.882 462.174C907.882 462.174 880.925 510.854 867.43 535.21C834.845 594.039 764.171 612.49 710.442 508.333L420.376 0H0L459.926 803.307C552.303 964.663 787.366 964.663 879.743 803.307C989.874 610.952 1089.87 441.97 1200 249.646L1052.28 0H639.519L780.152 250.999Z" fill="#3366FF"/>
|
||||
</svg>
|
After Width: | Height: | Size: 417 B |
83
api/core/model_runtime/model_providers/vessl_ai/llm/llm.py
Normal file
83
api/core/model_runtime/model_providers/vessl_ai/llm/llm.py
Normal file
|
@ -0,0 +1,83 @@
|
|||
from decimal import Decimal
|
||||
|
||||
from core.model_runtime.entities.common_entities import I18nObject
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import (
|
||||
AIModelEntity,
|
||||
DefaultParameterName,
|
||||
FetchFrom,
|
||||
ModelPropertyKey,
|
||||
ModelType,
|
||||
ParameterRule,
|
||||
ParameterType,
|
||||
PriceConfig,
|
||||
)
|
||||
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
|
||||
|
||||
|
||||
class VesslAILargeLanguageModel(OAIAPICompatLargeLanguageModel):
|
||||
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
|
||||
features = []
|
||||
|
||||
entity = AIModelEntity(
|
||||
model=model,
|
||||
label=I18nObject(en_US=model),
|
||||
model_type=ModelType.LLM,
|
||||
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||
features=features,
|
||||
model_properties={
|
||||
ModelPropertyKey.MODE: credentials.get("mode"),
|
||||
},
|
||||
parameter_rules=[
|
||||
ParameterRule(
|
||||
name=DefaultParameterName.TEMPERATURE.value,
|
||||
label=I18nObject(en_US="Temperature"),
|
||||
type=ParameterType.FLOAT,
|
||||
default=float(credentials.get("temperature", 0.7)),
|
||||
min=0,
|
||||
max=2,
|
||||
precision=2,
|
||||
),
|
||||
ParameterRule(
|
||||
name=DefaultParameterName.TOP_P.value,
|
||||
label=I18nObject(en_US="Top P"),
|
||||
type=ParameterType.FLOAT,
|
||||
default=float(credentials.get("top_p", 1)),
|
||||
min=0,
|
||||
max=1,
|
||||
precision=2,
|
||||
),
|
||||
ParameterRule(
|
||||
name=DefaultParameterName.TOP_K.value,
|
||||
label=I18nObject(en_US="Top K"),
|
||||
type=ParameterType.INT,
|
||||
default=int(credentials.get("top_k", 50)),
|
||||
min=-2147483647,
|
||||
max=2147483647,
|
||||
precision=0,
|
||||
),
|
||||
ParameterRule(
|
||||
name=DefaultParameterName.MAX_TOKENS.value,
|
||||
label=I18nObject(en_US="Max Tokens"),
|
||||
type=ParameterType.INT,
|
||||
default=512,
|
||||
min=1,
|
||||
max=int(credentials.get("max_tokens_to_sample", 4096)),
|
||||
),
|
||||
],
|
||||
pricing=PriceConfig(
|
||||
input=Decimal(credentials.get("input_price", 0)),
|
||||
output=Decimal(credentials.get("output_price", 0)),
|
||||
unit=Decimal(credentials.get("unit", 0)),
|
||||
currency=credentials.get("currency", "USD"),
|
||||
),
|
||||
)
|
||||
|
||||
if credentials["mode"] == "chat":
|
||||
entity.model_properties[ModelPropertyKey.MODE] = LLMMode.CHAT.value
|
||||
elif credentials["mode"] == "completion":
|
||||
entity.model_properties[ModelPropertyKey.MODE] = LLMMode.COMPLETION.value
|
||||
else:
|
||||
raise ValueError(f"Unknown completion type {credentials['completion_type']}")
|
||||
|
||||
return entity
|
10
api/core/model_runtime/model_providers/vessl_ai/vessl_ai.py
Normal file
10
api/core/model_runtime/model_providers/vessl_ai/vessl_ai.py
Normal file
|
@ -0,0 +1,10 @@
|
|||
import logging
|
||||
|
||||
from core.model_runtime.model_providers.__base.model_provider import ModelProvider
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class VesslAIProvider(ModelProvider):
|
||||
def validate_provider_credentials(self, credentials: dict) -> None:
|
||||
pass
|
|
@ -0,0 +1,56 @@
|
|||
provider: vessl_ai
|
||||
label:
|
||||
en_US: vessl_ai
|
||||
icon_small:
|
||||
en_US: icon_s_en.svg
|
||||
icon_large:
|
||||
en_US: icon_l_en.png
|
||||
background: "#F1EFED"
|
||||
help:
|
||||
title:
|
||||
en_US: How to deploy VESSL AI LLM Model Endpoint
|
||||
url:
|
||||
en_US: https://docs.vessl.ai/guides/get-started/llama3-deployment
|
||||
supported_model_types:
|
||||
- llm
|
||||
configurate_methods:
|
||||
- customizable-model
|
||||
model_credential_schema:
|
||||
model:
|
||||
label:
|
||||
en_US: Model Name
|
||||
placeholder:
|
||||
en_US: Enter your model name
|
||||
credential_form_schemas:
|
||||
- variable: endpoint_url
|
||||
label:
|
||||
en_US: endpoint url
|
||||
type: text-input
|
||||
required: true
|
||||
placeholder:
|
||||
en_US: Enter the url of your endpoint url
|
||||
- variable: api_key
|
||||
required: true
|
||||
label:
|
||||
en_US: API Key
|
||||
type: secret-input
|
||||
placeholder:
|
||||
en_US: Enter your VESSL AI secret key
|
||||
- variable: mode
|
||||
show_on:
|
||||
- variable: __model_type
|
||||
value: llm
|
||||
label:
|
||||
en_US: Completion mode
|
||||
type: select
|
||||
required: false
|
||||
default: chat
|
||||
placeholder:
|
||||
en_US: Select completion mode
|
||||
options:
|
||||
- value: completion
|
||||
label:
|
||||
en_US: Completion
|
||||
- value: chat
|
||||
label:
|
||||
en_US: Chat
|
|
@ -84,5 +84,10 @@ VOLC_EMBEDDING_ENDPOINT_ID=
|
|||
# 360 AI Credentials
|
||||
ZHINAO_API_KEY=
|
||||
|
||||
# VESSL AI Credentials
|
||||
VESSL_AI_MODEL_NAME=
|
||||
VESSL_AI_API_KEY=
|
||||
VESSL_AI_ENDPOINT_URL=
|
||||
|
||||
# Gitee AI Credentials
|
||||
GITEE_AI_API_KEY=
|
||||
GITEE_AI_API_KEY=
|
131
api/tests/integration_tests/model_runtime/vessl_ai/test_llm.py
Normal file
131
api/tests/integration_tests/model_runtime/vessl_ai/test_llm.py
Normal file
|
@ -0,0 +1,131 @@
|
|||
import os
|
||||
from collections.abc import Generator
|
||||
|
||||
import pytest
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
SystemPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
||||
from core.model_runtime.model_providers.vessl_ai.llm.llm import VesslAILargeLanguageModel
|
||||
|
||||
|
||||
def test_validate_credentials():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": "invalid_key",
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": "http://invalid_url",
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
model.validate_credentials(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
def test_invoke_model():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Who are you?"),
|
||||
],
|
||||
model_parameters={
|
||||
"temperature": 1.0,
|
||||
"top_k": 2,
|
||||
"top_p": 0.5,
|
||||
},
|
||||
stop=["How"],
|
||||
stream=False,
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
assert isinstance(response, LLMResult)
|
||||
assert len(response.message.content) > 0
|
||||
|
||||
|
||||
def test_invoke_stream_model():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
response = model.invoke(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
"mode": "chat",
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Who are you?"),
|
||||
],
|
||||
model_parameters={
|
||||
"temperature": 1.0,
|
||||
"top_k": 2,
|
||||
"top_p": 0.5,
|
||||
},
|
||||
stop=["How"],
|
||||
stream=True,
|
||||
user="abc-123",
|
||||
)
|
||||
|
||||
assert isinstance(response, Generator)
|
||||
|
||||
for chunk in response:
|
||||
assert isinstance(chunk, LLMResultChunk)
|
||||
assert isinstance(chunk.delta, LLMResultChunkDelta)
|
||||
assert isinstance(chunk.delta.message, AssistantPromptMessage)
|
||||
|
||||
|
||||
def test_get_num_tokens():
|
||||
model = VesslAILargeLanguageModel()
|
||||
|
||||
num_tokens = model.get_num_tokens(
|
||||
model=os.environ.get("VESSL_AI_MODEL_NAME"),
|
||||
credentials={
|
||||
"api_key": os.environ.get("VESSL_AI_API_KEY"),
|
||||
"endpoint_url": os.environ.get("VESSL_AI_ENDPOINT_URL"),
|
||||
},
|
||||
prompt_messages=[
|
||||
SystemPromptMessage(
|
||||
content="You are a helpful AI assistant.",
|
||||
),
|
||||
UserPromptMessage(content="Hello World!"),
|
||||
],
|
||||
)
|
||||
|
||||
assert isinstance(num_tokens, int)
|
||||
assert num_tokens == 21
|
Loading…
Reference in New Issue
Block a user