chore(api/tasks): apply ruff reformatting (#7594)

This commit is contained in:
Bowen Liang 2024-08-26 13:38:37 +08:00 committed by GitHub
parent 3be756eaed
commit 979422cdc6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
29 changed files with 546 additions and 508 deletions

View File

@ -75,7 +75,6 @@ exclude = [
"models/**/*.py",
"migrations/**/*",
"services/**/*.py",
"tasks/**/*.py",
]
[tool.pytest_env]

View File

@ -14,7 +14,7 @@ from models.dataset import Document as DatasetDocument
from models.dataset import DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def add_document_to_index_task(dataset_document_id: str):
"""
Async Add document to index
@ -22,24 +22,25 @@ def add_document_to_index_task(dataset_document_id: str):
Usage: add_document_to_index.delay(document_id)
"""
logging.info(click.style('Start add document to index: {}'.format(dataset_document_id), fg='green'))
logging.info(click.style("Start add document to index: {}".format(dataset_document_id), fg="green"))
start_at = time.perf_counter()
dataset_document = db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document_id).first()
if not dataset_document:
raise NotFound('Document not found')
raise NotFound("Document not found")
if dataset_document.indexing_status != 'completed':
if dataset_document.indexing_status != "completed":
return
indexing_cache_key = 'document_{}_indexing'.format(dataset_document.id)
indexing_cache_key = "document_{}_indexing".format(dataset_document.id)
try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) \
.order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)
documents = []
for segment in segments:
@ -50,7 +51,7 @@ def add_document_to_index_task(dataset_document_id: str):
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
},
)
documents.append(document)
@ -58,7 +59,7 @@ def add_document_to_index_task(dataset_document_id: str):
dataset = dataset_document.dataset
if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")
index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
@ -66,12 +67,15 @@ def add_document_to_index_task(dataset_document_id: str):
end_at = time.perf_counter()
logging.info(
click.style('Document added to index: {} latency: {}'.format(dataset_document.id, end_at - start_at), fg='green'))
click.style(
"Document added to index: {} latency: {}".format(dataset_document.id, end_at - start_at), fg="green"
)
)
except Exception as e:
logging.exception("add document to index failed")
dataset_document.enabled = False
dataset_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
dataset_document.status = 'error'
dataset_document.status = "error"
dataset_document.error = str(e)
db.session.commit()
finally:

View File

@ -10,9 +10,10 @@ from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@shared_task(queue='dataset')
def add_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def add_annotation_to_index_task(
annotation_id: str, question: str, tenant_id: str, app_id: str, collection_binding_id: str
):
"""
Add annotation to index.
:param annotation_id: annotation id
@ -23,38 +24,34 @@ def add_annotation_to_index_task(annotation_id: str, question: str, tenant_id: s
Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
"""
logging.info(click.style('Start build index for annotation: {}'.format(annotation_id), fg='green'))
logging.info(click.style("Start build index for annotation: {}".format(annotation_id), fg="green"))
start_at = time.perf_counter()
try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
)
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
)
document = Document(
page_content=question,
metadata={
"annotation_id": annotation_id,
"app_id": app_id,
"doc_id": annotation_id
}
page_content=question, metadata={"annotation_id": annotation_id, "app_id": app_id, "doc_id": annotation_id}
)
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.create([document], duplicate_check=True)
end_at = time.perf_counter()
logging.info(
click.style(
'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
fg='green'))
"Build index successful for annotation: {} latency: {}".format(annotation_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Build index for annotation failed")

View File

@ -14,9 +14,8 @@ from models.model import App, AppAnnotationSetting, MessageAnnotation
from services.dataset_service import DatasetCollectionBindingService
@shared_task(queue='dataset')
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str,
user_id: str):
@shared_task(queue="dataset")
def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, user_id: str):
"""
Add annotation to index.
:param job_id: job_id
@ -26,72 +25,66 @@ def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id:
:param user_id: user_id
"""
logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green'))
logging.info(click.style("Start batch import annotation: {}".format(job_id), fg="green"))
start_at = time.perf_counter()
indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id))
indexing_cache_key = "app_annotation_batch_import_{}".format(str(job_id))
# get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
if app:
try:
documents = []
for content in content_list:
annotation = MessageAnnotation(
app_id=app.id,
content=content['answer'],
question=content['question'],
account_id=user_id
app_id=app.id, content=content["answer"], question=content["question"], account_id=user_id
)
db.session.add(annotation)
db.session.flush()
document = Document(
page_content=content['question'],
metadata={
"annotation_id": annotation.id,
"app_id": app_id,
"doc_id": annotation.id
}
page_content=content["question"],
metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
)
documents.append(document)
# if annotation reply is enabled , batch add annotations' index
app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id
).first()
app_annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
)
if app_annotation_setting:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
app_annotation_setting.collection_binding_id,
'annotation'
dataset_collection_binding = (
DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
app_annotation_setting.collection_binding_id, "annotation"
)
)
if not dataset_collection_binding:
raise NotFound("App annotation setting not found")
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
)
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.create(documents, duplicate_check=True)
db.session.commit()
redis_client.setex(indexing_cache_key, 600, 'completed')
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style(
'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at),
fg='green'))
"Build index successful for batch import annotation: {} latency: {}".format(
job_id, end_at - start_at
),
fg="green",
)
)
except Exception as e:
db.session.rollback()
redis_client.setex(indexing_cache_key, 600, 'error')
indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id))
redis_client.setex(indexing_cache_key, 600, "error")
indexing_error_msg_key = "app_annotation_batch_import_error_msg_{}".format(str(job_id))
redis_client.setex(indexing_error_msg_key, 600, str(e))
logging.exception("Build index for batch import annotations failed")

View File

@ -9,36 +9,33 @@ from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@shared_task(queue='dataset')
def delete_annotation_index_task(annotation_id: str, app_id: str, tenant_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def delete_annotation_index_task(annotation_id: str, app_id: str, tenant_id: str, collection_binding_id: str):
"""
Async delete annotation index task
"""
logging.info(click.style('Start delete app annotation index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start delete app annotation index: {}".format(app_id), fg="green"))
start_at = time.perf_counter()
try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
)
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
collection_binding_id=dataset_collection_binding.id
indexing_technique="high_quality",
collection_binding_id=dataset_collection_binding.id,
)
try:
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('annotation_id', annotation_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("annotation_id", annotation_id)
except Exception:
logging.exception("Delete annotation index failed when annotation deleted.")
end_at = time.perf_counter()
logging.info(
click.style('App annotations index deleted : {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations index deleted : {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("Annotation deleted index failed:{}".format(str(e)))

View File

@ -12,49 +12,44 @@ from models.dataset import Dataset
from models.model import App, AppAnnotationSetting, MessageAnnotation
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def disable_annotation_reply_task(job_id: str, app_id: str, tenant_id: str):
"""
Async enable annotation reply task
"""
logging.info(click.style('Start delete app annotations index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start delete app annotations index: {}".format(app_id), fg="green"))
start_at = time.perf_counter()
# get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
annotations_count = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).count()
if not app:
raise NotFound("App not found")
app_annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id
).first()
app_annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
)
if not app_annotation_setting:
raise NotFound("App annotation setting not found")
disable_app_annotation_key = 'disable_app_annotation_{}'.format(str(app_id))
disable_app_annotation_job_key = 'disable_app_annotation_job_{}'.format(str(job_id))
disable_app_annotation_key = "disable_app_annotation_{}".format(str(app_id))
disable_app_annotation_job_key = "disable_app_annotation_job_{}".format(str(job_id))
try:
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
collection_binding_id=app_annotation_setting.collection_binding_id
indexing_technique="high_quality",
collection_binding_id=app_annotation_setting.collection_binding_id,
)
try:
if annotations_count > 0:
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('app_id', app_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("app_id", app_id)
except Exception:
logging.exception("Delete annotation index failed when annotation deleted.")
redis_client.setex(disable_app_annotation_job_key, 600, 'completed')
redis_client.setex(disable_app_annotation_job_key, 600, "completed")
# delete annotation setting
db.session.delete(app_annotation_setting)
@ -62,12 +57,12 @@ def disable_annotation_reply_task(job_id: str, app_id: str, tenant_id: str):
end_at = time.perf_counter()
logging.info(
click.style('App annotations index deleted : {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations index deleted : {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("Annotation batch deleted index failed:{}".format(str(e)))
redis_client.setex(disable_app_annotation_job_key, 600, 'error')
disable_app_annotation_error_key = 'disable_app_annotation_error_{}'.format(str(job_id))
redis_client.setex(disable_app_annotation_job_key, 600, "error")
disable_app_annotation_error_key = "disable_app_annotation_error_{}".format(str(job_id))
redis_client.setex(disable_app_annotation_error_key, 600, str(e))
finally:
redis_client.delete(disable_app_annotation_key)

View File

@ -15,37 +15,39 @@ from models.model import App, AppAnnotationSetting, MessageAnnotation
from services.dataset_service import DatasetCollectionBindingService
@shared_task(queue='dataset')
def enable_annotation_reply_task(job_id: str, app_id: str, user_id: str, tenant_id: str, score_threshold: float,
embedding_provider_name: str, embedding_model_name: str):
@shared_task(queue="dataset")
def enable_annotation_reply_task(
job_id: str,
app_id: str,
user_id: str,
tenant_id: str,
score_threshold: float,
embedding_provider_name: str,
embedding_model_name: str,
):
"""
Async enable annotation reply task
"""
logging.info(click.style('Start add app annotation to index: {}'.format(app_id), fg='green'))
logging.info(click.style("Start add app annotation to index: {}".format(app_id), fg="green"))
start_at = time.perf_counter()
# get app info
app = db.session.query(App).filter(
App.id == app_id,
App.tenant_id == tenant_id,
App.status == 'normal'
).first()
app = db.session.query(App).filter(App.id == app_id, App.tenant_id == tenant_id, App.status == "normal").first()
if not app:
raise NotFound("App not found")
annotations = db.session.query(MessageAnnotation).filter(MessageAnnotation.app_id == app_id).all()
enable_app_annotation_key = 'enable_app_annotation_{}'.format(str(app_id))
enable_app_annotation_job_key = 'enable_app_annotation_job_{}'.format(str(job_id))
enable_app_annotation_key = "enable_app_annotation_{}".format(str(app_id))
enable_app_annotation_job_key = "enable_app_annotation_job_{}".format(str(job_id))
try:
documents = []
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_provider_name,
embedding_model_name,
'annotation'
embedding_provider_name, embedding_model_name, "annotation"
)
annotation_setting = (
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.app_id == app_id).first()
)
annotation_setting = db.session.query(AppAnnotationSetting).filter(
AppAnnotationSetting.app_id == app_id).first()
if annotation_setting:
annotation_setting.score_threshold = score_threshold
annotation_setting.collection_binding_id = dataset_collection_binding.id
@ -58,48 +60,42 @@ def enable_annotation_reply_task(job_id: str, app_id: str, user_id: str, tenant_
score_threshold=score_threshold,
collection_binding_id=dataset_collection_binding.id,
created_user_id=user_id,
updated_user_id=user_id
updated_user_id=user_id,
)
db.session.add(new_app_annotation_setting)
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=embedding_provider_name,
embedding_model=embedding_model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
)
if annotations:
for annotation in annotations:
document = Document(
page_content=annotation.question,
metadata={
"annotation_id": annotation.id,
"app_id": app_id,
"doc_id": annotation.id
}
metadata={"annotation_id": annotation.id, "app_id": app_id, "doc_id": annotation.id},
)
documents.append(document)
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
try:
vector.delete_by_metadata_field('app_id', app_id)
vector.delete_by_metadata_field("app_id", app_id)
except Exception as e:
logging.info(
click.style('Delete annotation index error: {}'.format(str(e)),
fg='red'))
logging.info(click.style("Delete annotation index error: {}".format(str(e)), fg="red"))
vector.create(documents)
db.session.commit()
redis_client.setex(enable_app_annotation_job_key, 600, 'completed')
redis_client.setex(enable_app_annotation_job_key, 600, "completed")
end_at = time.perf_counter()
logging.info(
click.style('App annotations added to index: {} latency: {}'.format(app_id, end_at - start_at),
fg='green'))
click.style("App annotations added to index: {} latency: {}".format(app_id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("Annotation batch created index failed:{}".format(str(e)))
redis_client.setex(enable_app_annotation_job_key, 600, 'error')
enable_app_annotation_error_key = 'enable_app_annotation_error_{}'.format(str(job_id))
redis_client.setex(enable_app_annotation_job_key, 600, "error")
enable_app_annotation_error_key = "enable_app_annotation_error_{}".format(str(job_id))
redis_client.setex(enable_app_annotation_error_key, 600, str(e))
db.session.rollback()
finally:

View File

@ -10,9 +10,10 @@ from models.dataset import Dataset
from services.dataset_service import DatasetCollectionBindingService
@shared_task(queue='dataset')
def update_annotation_to_index_task(annotation_id: str, question: str, tenant_id: str, app_id: str,
collection_binding_id: str):
@shared_task(queue="dataset")
def update_annotation_to_index_task(
annotation_id: str, question: str, tenant_id: str, app_id: str, collection_binding_id: str
):
"""
Update annotation to index.
:param annotation_id: annotation id
@ -23,39 +24,35 @@ def update_annotation_to_index_task(annotation_id: str, question: str, tenant_id
Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
"""
logging.info(click.style('Start update index for annotation: {}'.format(annotation_id), fg='green'))
logging.info(click.style("Start update index for annotation: {}".format(annotation_id), fg="green"))
start_at = time.perf_counter()
try:
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(
collection_binding_id,
'annotation'
collection_binding_id, "annotation"
)
dataset = Dataset(
id=app_id,
tenant_id=tenant_id,
indexing_technique='high_quality',
indexing_technique="high_quality",
embedding_model_provider=dataset_collection_binding.provider_name,
embedding_model=dataset_collection_binding.model_name,
collection_binding_id=dataset_collection_binding.id
collection_binding_id=dataset_collection_binding.id,
)
document = Document(
page_content=question,
metadata={
"annotation_id": annotation_id,
"app_id": app_id,
"doc_id": annotation_id
}
page_content=question, metadata={"annotation_id": annotation_id, "app_id": app_id, "doc_id": annotation_id}
)
vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])
vector.delete_by_metadata_field('annotation_id', annotation_id)
vector = Vector(dataset, attributes=["doc_id", "annotation_id", "app_id"])
vector.delete_by_metadata_field("annotation_id", annotation_id)
vector.add_texts([document])
end_at = time.perf_counter()
logging.info(
click.style(
'Build index successful for annotation: {} latency: {}'.format(annotation_id, end_at - start_at),
fg='green'))
"Build index successful for annotation: {} latency: {}".format(annotation_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Build index for annotation failed")

View File

@ -16,9 +16,10 @@ from libs import helper
from models.dataset import Dataset, Document, DocumentSegment
@shared_task(queue='dataset')
def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: str, document_id: str,
tenant_id: str, user_id: str):
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str, content: list, dataset_id: str, document_id: str, tenant_id: str, user_id: str
):
"""
Async batch create segment to index
:param job_id:
@ -30,44 +31,44 @@ def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: s
Usage: batch_create_segment_to_index_task.delay(segment_id)
"""
logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
logging.info(click.style("Start batch create segment jobId: {}".format(job_id), fg="green"))
start_at = time.perf_counter()
indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
indexing_cache_key = "segment_batch_import_{}".format(job_id)
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise ValueError('Dataset not exist.')
raise ValueError("Dataset not exist.")
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document:
raise ValueError('Document not exist.')
raise ValueError("Document not exist.")
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
raise ValueError('Document is not available.')
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
raise ValueError("Document is not available.")
document_segments = []
embedding_model = None
if dataset.indexing_technique == 'high_quality':
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
model=dataset.embedding_model,
)
for segment in content:
content = segment['content']
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content]
) if embedding_model else 0
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == dataset_document.id
).scalar()
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content]) if embedding_model else 0
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == dataset_document.id)
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
@ -80,20 +81,22 @@ def batch_create_segment_to_index_task(job_id: str, content: list, dataset_id: s
tokens=tokens,
created_by=user_id,
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
status='completed',
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
status="completed",
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
)
if dataset_document.doc_form == 'qa_model':
segment_document.answer = segment['answer']
if dataset_document.doc_form == "qa_model":
segment_document.answer = segment["answer"]
db.session.add(segment_document)
document_segments.append(segment_document)
# add index to db
indexing_runner = IndexingRunner()
indexing_runner.batch_add_segments(document_segments, dataset)
db.session.commit()
redis_client.setex(indexing_cache_key, 600, 'completed')
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment batch created job: {} latency: {}".format(job_id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("Segments batch created index failed:{}".format(str(e)))
redis_client.setex(indexing_cache_key, 600, 'error')
redis_client.setex(indexing_cache_key, 600, "error")

View File

@ -19,9 +19,15 @@ from models.model import UploadFile
# Add import statement for ValueError
@shared_task(queue='dataset')
def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
index_struct: str, collection_binding_id: str, doc_form: str):
@shared_task(queue="dataset")
def clean_dataset_task(
dataset_id: str,
tenant_id: str,
indexing_technique: str,
index_struct: str,
collection_binding_id: str,
doc_form: str,
):
"""
Clean dataset when dataset deleted.
:param dataset_id: dataset id
@ -33,7 +39,7 @@ def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
Usage: clean_dataset_task.delay(dataset_id, tenant_id, indexing_technique, index_struct)
"""
logging.info(click.style('Start clean dataset when dataset deleted: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Start clean dataset when dataset deleted: {}".format(dataset_id), fg="green"))
start_at = time.perf_counter()
try:
@ -48,9 +54,9 @@ def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
segments = db.session.query(DocumentSegment).filter(DocumentSegment.dataset_id == dataset_id).all()
if documents is None or len(documents) == 0:
logging.info(click.style('No documents found for dataset: {}'.format(dataset_id), fg='green'))
logging.info(click.style("No documents found for dataset: {}".format(dataset_id), fg="green"))
else:
logging.info(click.style('Cleaning documents for dataset: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Cleaning documents for dataset: {}".format(dataset_id), fg="green"))
# Specify the index type before initializing the index processor
if doc_form is None:
raise ValueError("Index type must be specified.")
@ -71,15 +77,16 @@ def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
if documents:
for document in documents:
try:
if document.data_source_type == 'upload_file':
if document.data_source_type == "upload_file":
if document.data_source_info:
data_source_info = document.data_source_info_dict
if data_source_info and 'upload_file_id' in data_source_info:
file_id = data_source_info['upload_file_id']
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == document.tenant_id,
UploadFile.id == file_id
).first()
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
.first()
)
if not file:
continue
storage.delete(file.key)
@ -90,6 +97,9 @@ def clean_dataset_task(dataset_id: str, tenant_id: str, indexing_technique: str,
db.session.commit()
end_at = time.perf_counter()
logging.info(
click.style('Cleaned dataset when dataset deleted: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
click.style(
"Cleaned dataset when dataset deleted: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"
)
)
except Exception:
logging.exception("Cleaned dataset when dataset deleted failed")

View File

@ -12,7 +12,7 @@ from models.dataset import Dataset, DocumentSegment
from models.model import UploadFile
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_id: Optional[str]):
"""
Clean document when document deleted.
@ -23,14 +23,14 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
Usage: clean_document_task.delay(document_id, dataset_id)
"""
logging.info(click.style('Start clean document when document deleted: {}'.format(document_id), fg='green'))
logging.info(click.style("Start clean document when document deleted: {}".format(document_id), fg="green"))
start_at = time.perf_counter()
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
# check segment is exist
@ -44,9 +44,7 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
db.session.commit()
if file_id:
file = db.session.query(UploadFile).filter(
UploadFile.id == file_id
).first()
file = db.session.query(UploadFile).filter(UploadFile.id == file_id).first()
if file:
try:
storage.delete(file.key)
@ -57,6 +55,10 @@ def clean_document_task(document_id: str, dataset_id: str, doc_form: str, file_i
end_at = time.perf_counter()
logging.info(
click.style('Cleaned document when document deleted: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document deleted: {} latency: {}".format(document_id, end_at - start_at),
fg="green",
)
)
except Exception:
logging.exception("Cleaned document when document deleted failed")

View File

@ -9,7 +9,7 @@ from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def clean_notion_document_task(document_ids: list[str], dataset_id: str):
"""
Clean document when document deleted.
@ -18,20 +18,20 @@ def clean_notion_document_task(document_ids: list[str], dataset_id: str):
Usage: clean_notion_document_task.delay(document_ids, dataset_id)
"""
logging.info(click.style('Start clean document when import form notion document deleted: {}'.format(dataset_id), fg='green'))
logging.info(
click.style("Start clean document when import form notion document deleted: {}".format(dataset_id), fg="green")
)
start_at = time.perf_counter()
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")
index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
document = db.session.query(Document).filter(Document.id == document_id).first()
db.session.delete(document)
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
@ -44,8 +44,12 @@ def clean_notion_document_task(document_ids: list[str], dataset_id: str):
db.session.commit()
end_at = time.perf_counter()
logging.info(
click.style('Clean document when import form notion document deleted end :: {} latency: {}'.format(
dataset_id, end_at - start_at),
fg='green'))
click.style(
"Clean document when import form notion document deleted end :: {} latency: {}".format(
dataset_id, end_at - start_at
),
fg="green",
)
)
except Exception:
logging.exception("Cleaned document when import form notion document deleted failed")

View File

@ -14,7 +14,7 @@ from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]] = None):
"""
Async create segment to index
@ -22,23 +22,23 @@ def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]]
:param keywords:
Usage: create_segment_to_index_task.delay(segment_id)
"""
logging.info(click.style('Start create segment to index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start create segment to index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")
if segment.status != 'waiting':
if segment.status != "waiting":
return
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)
try:
# update segment status to indexing
update_params = {
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
}
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
db.session.commit()
@ -49,23 +49,23 @@ def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]]
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
},
)
dataset = segment.dataset
if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return
dataset_document = segment.document
if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return
index_type = dataset.doc_form
@ -75,18 +75,20 @@ def create_segment_to_index_task(segment_id: str, keywords: Optional[list[str]]
# update segment to completed
update_params = {
DocumentSegment.status: "completed",
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
}
DocumentSegment.query.filter_by(id=segment.id).update(update_params)
db.session.commit()
end_at = time.perf_counter()
logging.info(click.style('Segment created to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment created to index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("create segment to index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.status = "error"
segment.error = str(e)
db.session.commit()
finally:

View File

@ -11,7 +11,7 @@ from models.dataset import Dataset, DocumentSegment
from models.dataset import Document as DatasetDocument
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def deal_dataset_vector_index_task(dataset_id: str, action: str):
"""
Async deal dataset from index
@ -19,41 +19,46 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
:param action: action
Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
"""
logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
logging.info(click.style("Start deal dataset vector index: {}".format(dataset_id), fg="green"))
start_at = time.perf_counter()
try:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
dataset = Dataset.query.filter_by(id=dataset_id).first()
if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")
index_type = dataset.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
if action == "remove":
index_processor.clean(dataset, None, with_keywords=False)
elif action == "add":
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
dataset_documents = (
db.session.query(DatasetDocument)
.filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == "completed",
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
)
.all()
)
if dataset_documents:
dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
{"indexing_status": "indexing"}, synchronize_session=False
)
db.session.commit()
for dataset_document in dataset_documents:
try:
# add from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)
if segments:
documents = []
for segment in segments:
@ -64,32 +69,39 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
},
)
documents.append(document)
# save vector index
index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "completed"}, synchronize_session=False
)
db.session.commit()
except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
)
db.session.commit()
elif action == 'update':
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
elif action == "update":
dataset_documents = (
db.session.query(DatasetDocument)
.filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == "completed",
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
)
.all()
)
# add new index
if dataset_documents:
# update document status
dataset_documents_ids = [doc.id for doc in dataset_documents]
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)) \
.update({"indexing_status": "indexing"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id.in_(dataset_documents_ids)).update(
{"indexing_status": "indexing"}, synchronize_session=False
)
db.session.commit()
# clean index
@ -98,10 +110,12 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
for dataset_document in dataset_documents:
# update from vector index
try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
).order_by(DocumentSegment.position.asc()).all()
segments = (
db.session.query(DocumentSegment)
.filter(DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True)
.order_by(DocumentSegment.position.asc())
.all()
)
if segments:
documents = []
for segment in segments:
@ -112,23 +126,25 @@ def deal_dataset_vector_index_task(dataset_id: str, action: str):
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
},
)
documents.append(document)
# save vector index
index_processor.load(dataset, documents, with_keywords=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "completed"}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "completed"}, synchronize_session=False
)
db.session.commit()
except Exception as e:
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id) \
.update({"indexing_status": "error", "error": str(e)}, synchronize_session=False)
db.session.query(DatasetDocument).filter(DatasetDocument.id == dataset_document.id).update(
{"indexing_status": "error", "error": str(e)}, synchronize_session=False
)
db.session.commit()
end_at = time.perf_counter()
logging.info(
click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
click.style("Deal dataset vector index: {} latency: {}".format(dataset_id, end_at - start_at), fg="green")
)
except Exception:
logging.exception("Deal dataset vector index failed")

View File

@ -10,7 +10,7 @@ from extensions.ext_redis import redis_client
from models.dataset import Dataset, Document
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_id: str, document_id: str):
"""
Async Remove segment from index
@ -21,22 +21,22 @@ def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_
Usage: delete_segment_from_index_task.delay(segment_id)
"""
logging.info(click.style('Start delete segment from index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start delete segment from index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter()
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment_id)
indexing_cache_key = "segment_{}_delete_indexing".format(segment_id)
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment_id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment_id), fg="cyan"))
return
dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment_id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment_id), fg="cyan"))
return
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment_id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment_id), fg="cyan"))
return
index_type = dataset_document.doc_form
@ -44,7 +44,9 @@ def delete_segment_from_index_task(segment_id: str, index_node_id: str, dataset_
index_processor.clean(dataset, [index_node_id])
end_at = time.perf_counter()
logging.info(click.style('Segment deleted from index: {} latency: {}'.format(segment_id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment deleted from index: {} latency: {}".format(segment_id, end_at - start_at), fg="green")
)
except Exception:
logging.exception("delete segment from index failed")
finally:

View File

@ -11,7 +11,7 @@ from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def disable_segment_from_index_task(segment_id: str):
"""
Async disable segment from index
@ -19,33 +19,33 @@ def disable_segment_from_index_task(segment_id: str):
Usage: disable_segment_from_index_task.delay(segment_id)
"""
logging.info(click.style('Start disable segment from index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start disable segment from index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")
if segment.status != 'completed':
raise NotFound('Segment is not completed , disable action is not allowed.')
if segment.status != "completed":
raise NotFound("Segment is not completed , disable action is not allowed.")
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)
try:
dataset = segment.dataset
if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return
dataset_document = segment.document
if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return
index_type = dataset_document.doc_form
@ -53,7 +53,9 @@ def disable_segment_from_index_task(segment_id: str):
index_processor.clean(dataset, [segment.index_node_id])
end_at = time.perf_counter()
logging.info(click.style('Segment removed from index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment removed from index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception:
logging.exception("remove segment from index failed")
segment.enabled = True

View File

@ -14,7 +14,7 @@ from models.dataset import Dataset, Document, DocumentSegment
from models.source import DataSourceOauthBinding
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_sync_task(dataset_id: str, document_id: str):
"""
Async update document
@ -23,50 +23,50 @@ def document_indexing_sync_task(dataset_id: str, document_id: str):
Usage: document_indexing_sync_task.delay(dataset_id, document_id)
"""
logging.info(click.style('Start sync document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start sync document: {}".format(document_id), fg="green"))
start_at = time.perf_counter()
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")
data_source_info = document.data_source_info_dict
if document.data_source_type == 'notion_import':
if not data_source_info or 'notion_page_id' not in data_source_info \
or 'notion_workspace_id' not in data_source_info:
if document.data_source_type == "notion_import":
if (
not data_source_info
or "notion_page_id" not in data_source_info
or "notion_workspace_id" not in data_source_info
):
raise ValueError("no notion page found")
workspace_id = data_source_info['notion_workspace_id']
page_id = data_source_info['notion_page_id']
page_type = data_source_info['type']
page_edited_time = data_source_info['last_edited_time']
workspace_id = data_source_info["notion_workspace_id"]
page_id = data_source_info["notion_page_id"]
page_type = data_source_info["type"]
page_edited_time = data_source_info["last_edited_time"]
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == document.tenant_id,
DataSourceOauthBinding.provider == 'notion',
DataSourceOauthBinding.provider == "notion",
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
raise ValueError("Data source binding not found.")
loader = NotionExtractor(
notion_workspace_id=workspace_id,
notion_obj_id=page_id,
notion_page_type=page_type,
notion_access_token=data_source_binding.access_token,
tenant_id=document.tenant_id
tenant_id=document.tenant_id,
)
last_edited_time = loader.get_notion_last_edited_time()
# check the page is updated
if last_edited_time != page_edited_time:
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
@ -74,7 +74,7 @@ def document_indexing_sync_task(dataset_id: str, document_id: str):
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")
index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
@ -89,7 +89,13 @@ def document_indexing_sync_task(dataset_id: str, document_id: str):
end_at = time.perf_counter()
logging.info(
click.style('Cleaned document when document update data source or process rule: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document update data source or process rule: {} latency: {}".format(
document_id, end_at - start_at
),
fg="green",
)
)
except Exception:
logging.exception("Cleaned document when document update data source or process rule failed")
@ -97,8 +103,10 @@ def document_indexing_sync_task(dataset_id: str, document_id: str):
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logging.info(click.style('update document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(
click.style("update document: {} latency: {}".format(document.id, end_at - start_at), fg="green")
)
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception:
pass

View File

@ -12,7 +12,7 @@ from models.dataset import Dataset, Document
from services.feature_service import FeatureService
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_task(dataset_id: str, document_ids: list):
"""
Async process document
@ -36,16 +36,17 @@ def document_indexing_task(dataset_id: str, document_ids: list):
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e:
for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e)
document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.add(document)
@ -53,15 +54,14 @@ def document_indexing_task(dataset_id: str, document_ids: list):
return
for document_id in document_ids:
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
documents.append(document)
db.session.add(document)
@ -71,8 +71,8 @@ def document_indexing_task(dataset_id: str, document_ids: list):
indexing_runner = IndexingRunner()
indexing_runner.run(documents)
end_at = time.perf_counter()
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception:
pass

View File

@ -12,7 +12,7 @@ from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def document_indexing_update_task(dataset_id: str, document_id: str):
"""
Async update document
@ -21,18 +21,15 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
Usage: document_indexing_update_task.delay(dataset_id, document_id)
"""
logging.info(click.style('Start update document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start update document: {}".format(document_id), fg="green"))
start_at = time.perf_counter()
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.commit()
@ -40,7 +37,7 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
try:
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
raise Exception('Dataset not found')
raise Exception("Dataset not found")
index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
@ -57,7 +54,13 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
db.session.commit()
end_at = time.perf_counter()
logging.info(
click.style('Cleaned document when document update data source or process rule: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
click.style(
"Cleaned document when document update data source or process rule: {} latency: {}".format(
document_id, end_at - start_at
),
fg="green",
)
)
except Exception:
logging.exception("Cleaned document when document update data source or process rule failed")
@ -65,8 +68,8 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logging.info(click.style('update document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(click.style("update document: {} latency: {}".format(document.id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception:
pass

View File

@ -13,7 +13,7 @@ from models.dataset import Dataset, Document, DocumentSegment
from services.feature_service import FeatureService
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
"""
Async process document
@ -37,16 +37,17 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e:
for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
@ -54,12 +55,11 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
return
for document_id in document_ids:
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
logging.info(click.style("Start process document: {}".format(document_id), fg="green"))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
# clean old data
@ -77,7 +77,7 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
db.session.delete(segment)
db.session.commit()
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow()
documents.append(document)
db.session.add(document)
@ -87,8 +87,8 @@ def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
indexing_runner = IndexingRunner()
indexing_runner.run(documents)
end_at = time.perf_counter()
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Processed dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception:
pass

View File

@ -13,7 +13,7 @@ from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def enable_segment_to_index_task(segment_id: str):
"""
Async enable segment to index
@ -21,17 +21,17 @@ def enable_segment_to_index_task(segment_id: str):
Usage: enable_segment_to_index_task.delay(segment_id)
"""
logging.info(click.style('Start enable segment to index: {}'.format(segment_id), fg='green'))
logging.info(click.style("Start enable segment to index: {}".format(segment_id), fg="green"))
start_at = time.perf_counter()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_id).first()
if not segment:
raise NotFound('Segment not found')
raise NotFound("Segment not found")
if segment.status != 'completed':
raise NotFound('Segment is not completed, enable action is not allowed.')
if segment.status != "completed":
raise NotFound("Segment is not completed, enable action is not allowed.")
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
indexing_cache_key = "segment_{}_indexing".format(segment.id)
try:
document = Document(
@ -41,23 +41,23 @@ def enable_segment_to_index_task(segment_id: str):
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
},
)
dataset = segment.dataset
if not dataset:
logging.info(click.style('Segment {} has no dataset, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no dataset, pass.".format(segment.id), fg="cyan"))
return
dataset_document = segment.document
if not dataset_document:
logging.info(click.style('Segment {} has no document, pass.'.format(segment.id), fg='cyan'))
logging.info(click.style("Segment {} has no document, pass.".format(segment.id), fg="cyan"))
return
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
logging.info(click.style('Segment {} document status is invalid, pass.'.format(segment.id), fg='cyan'))
if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != "completed":
logging.info(click.style("Segment {} document status is invalid, pass.".format(segment.id), fg="cyan"))
return
index_processor = IndexProcessorFactory(dataset_document.doc_form).init_index_processor()
@ -65,12 +65,14 @@ def enable_segment_to_index_task(segment_id: str):
index_processor.load(dataset, [document])
end_at = time.perf_counter()
logging.info(click.style('Segment enabled to index: {} latency: {}'.format(segment.id, end_at - start_at), fg='green'))
logging.info(
click.style("Segment enabled to index: {} latency: {}".format(segment.id, end_at - start_at), fg="green")
)
except Exception as e:
logging.exception("enable segment to index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.status = "error"
segment.error = str(e)
db.session.commit()
finally:

View File

@ -9,7 +9,7 @@ from configs import dify_config
from extensions.ext_mail import mail
@shared_task(queue='mail')
@shared_task(queue="mail")
def send_invite_member_mail_task(language: str, to: str, token: str, inviter_name: str, workspace_name: str):
"""
Async Send invite member mail
@ -24,31 +24,38 @@ def send_invite_member_mail_task(language: str, to: str, token: str, inviter_nam
if not mail.is_inited():
return
logging.info(click.style('Start send invite member mail to {} in workspace {}'.format(to, workspace_name),
fg='green'))
logging.info(
click.style("Start send invite member mail to {} in workspace {}".format(to, workspace_name), fg="green")
)
start_at = time.perf_counter()
# send invite member mail using different languages
try:
url = f'{dify_config.CONSOLE_WEB_URL}/activate?token={token}'
if language == 'zh-Hans':
html_content = render_template('invite_member_mail_template_zh-CN.html',
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url)
url = f"{dify_config.CONSOLE_WEB_URL}/activate?token={token}"
if language == "zh-Hans":
html_content = render_template(
"invite_member_mail_template_zh-CN.html",
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url,
)
mail.send(to=to, subject="立即加入 Dify 工作空间", html=html_content)
else:
html_content = render_template('invite_member_mail_template_en-US.html',
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url)
html_content = render_template(
"invite_member_mail_template_en-US.html",
to=to,
inviter_name=inviter_name,
workspace_name=workspace_name,
url=url,
)
mail.send(to=to, subject="Join Dify Workspace Now", html=html_content)
end_at = time.perf_counter()
logging.info(
click.style('Send invite member mail to {} succeeded: latency: {}'.format(to, end_at - start_at),
fg='green'))
click.style(
"Send invite member mail to {} succeeded: latency: {}".format(to, end_at - start_at), fg="green"
)
)
except Exception:
logging.exception("Send invite member mail to {} failed".format(to))
logging.exception("Send invite member mail to {} failed".format(to))

View File

@ -9,7 +9,7 @@ from configs import dify_config
from extensions.ext_mail import mail
@shared_task(queue='mail')
@shared_task(queue="mail")
def send_reset_password_mail_task(language: str, to: str, token: str):
"""
Async Send reset password mail
@ -20,26 +20,24 @@ def send_reset_password_mail_task(language: str, to: str, token: str):
if not mail.is_inited():
return
logging.info(click.style('Start password reset mail to {}'.format(to), fg='green'))
logging.info(click.style("Start password reset mail to {}".format(to), fg="green"))
start_at = time.perf_counter()
# send reset password mail using different languages
try:
url = f'{dify_config.CONSOLE_WEB_URL}/forgot-password?token={token}'
if language == 'zh-Hans':
html_content = render_template('reset_password_mail_template_zh-CN.html',
to=to,
url=url)
url = f"{dify_config.CONSOLE_WEB_URL}/forgot-password?token={token}"
if language == "zh-Hans":
html_content = render_template("reset_password_mail_template_zh-CN.html", to=to, url=url)
mail.send(to=to, subject="重置您的 Dify 密码", html=html_content)
else:
html_content = render_template('reset_password_mail_template_en-US.html',
to=to,
url=url)
html_content = render_template("reset_password_mail_template_en-US.html", to=to, url=url)
mail.send(to=to, subject="Reset Your Dify Password", html=html_content)
end_at = time.perf_counter()
logging.info(
click.style('Send password reset mail to {} succeeded: latency: {}'.format(to, end_at - start_at),
fg='green'))
click.style(
"Send password reset mail to {} succeeded: latency: {}".format(to, end_at - start_at), fg="green"
)
)
except Exception:
logging.exception("Send password reset mail to {} failed".format(to))

View File

@ -10,7 +10,7 @@ from models.model import Message
from models.workflow import WorkflowRun
@shared_task(queue='ops_trace')
@shared_task(queue="ops_trace")
def process_trace_tasks(tasks_data):
"""
Async process trace tasks
@ -20,17 +20,17 @@ def process_trace_tasks(tasks_data):
"""
from core.ops.ops_trace_manager import OpsTraceManager
trace_info = tasks_data.get('trace_info')
app_id = tasks_data.get('app_id')
trace_info_type = tasks_data.get('trace_info_type')
trace_info = tasks_data.get("trace_info")
app_id = tasks_data.get("app_id")
trace_info_type = tasks_data.get("trace_info_type")
trace_instance = OpsTraceManager.get_ops_trace_instance(app_id)
if trace_info.get('message_data'):
trace_info['message_data'] = Message.from_dict(data=trace_info['message_data'])
if trace_info.get('workflow_data'):
trace_info['workflow_data'] = WorkflowRun.from_dict(data=trace_info['workflow_data'])
if trace_info.get('documents'):
trace_info['documents'] = [Document(**doc) for doc in trace_info['documents']]
if trace_info.get("message_data"):
trace_info["message_data"] = Message.from_dict(data=trace_info["message_data"])
if trace_info.get("workflow_data"):
trace_info["workflow_data"] = WorkflowRun.from_dict(data=trace_info["workflow_data"])
if trace_info.get("documents"):
trace_info["documents"] = [Document(**doc) for doc in trace_info["documents"]]
try:
if trace_instance:

View File

@ -10,7 +10,7 @@ from extensions.ext_database import db
from models.dataset import Document
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def recover_document_indexing_task(dataset_id: str, document_id: str):
"""
Async recover document
@ -19,16 +19,13 @@ def recover_document_indexing_task(dataset_id: str, document_id: str):
Usage: recover_document_indexing_task.delay(dataset_id, document_id)
"""
logging.info(click.style('Recover document: {}'.format(document_id), fg='green'))
logging.info(click.style("Recover document: {}".format(document_id), fg="green"))
start_at = time.perf_counter()
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")
try:
indexing_runner = IndexingRunner()
@ -39,8 +36,10 @@ def recover_document_indexing_task(dataset_id: str, document_id: str):
elif document.indexing_status == "indexing":
indexing_runner.run_in_indexing_status(document)
end_at = time.perf_counter()
logging.info(click.style('Processed document: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
logging.info(
click.style("Processed document: {} latency: {}".format(document.id, end_at - start_at), fg="green")
)
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
except Exception:
pass

View File

@ -33,9 +33,9 @@ from models.web import PinnedConversation, SavedMessage
from models.workflow import ConversationVariable, Workflow, WorkflowAppLog, WorkflowNodeExecution, WorkflowRun
@shared_task(queue='app_deletion', bind=True, max_retries=3)
@shared_task(queue="app_deletion", bind=True, max_retries=3)
def remove_app_and_related_data_task(self, tenant_id: str, app_id: str):
logging.info(click.style(f'Start deleting app and related data: {tenant_id}:{app_id}', fg='green'))
logging.info(click.style(f"Start deleting app and related data: {tenant_id}:{app_id}", fg="green"))
start_at = time.perf_counter()
try:
# Delete related data
@ -59,13 +59,14 @@ def remove_app_and_related_data_task(self, tenant_id: str, app_id: str):
_delete_conversation_variables(app_id=app_id)
end_at = time.perf_counter()
logging.info(click.style(f'App and related data deleted: {app_id} latency: {end_at - start_at}', fg='green'))
logging.info(click.style(f"App and related data deleted: {app_id} latency: {end_at - start_at}", fg="green"))
except SQLAlchemyError as e:
logging.exception(
click.style(f"Database error occurred while deleting app {app_id} and related data", fg='red'))
click.style(f"Database error occurred while deleting app {app_id} and related data", fg="red")
)
raise self.retry(exc=e, countdown=60) # Retry after 60 seconds
except Exception as e:
logging.exception(click.style(f"Error occurred while deleting app {app_id} and related data", fg='red'))
logging.exception(click.style(f"Error occurred while deleting app {app_id} and related data", fg="red"))
raise self.retry(exc=e, countdown=60) # Retry after 60 seconds
@ -77,7 +78,7 @@ def _delete_app_model_configs(tenant_id: str, app_id: str):
"""select id from app_model_configs where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_model_config,
"app model config"
"app model config",
)
@ -85,12 +86,7 @@ def _delete_app_site(tenant_id: str, app_id: str):
def del_site(site_id: str):
db.session.query(Site).filter(Site.id == site_id).delete(synchronize_session=False)
_delete_records(
"""select id from sites where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_site,
"site"
)
_delete_records("""select id from sites where app_id=:app_id limit 1000""", {"app_id": app_id}, del_site, "site")
def _delete_app_api_tokens(tenant_id: str, app_id: str):
@ -98,10 +94,7 @@ def _delete_app_api_tokens(tenant_id: str, app_id: str):
db.session.query(ApiToken).filter(ApiToken.id == api_token_id).delete(synchronize_session=False)
_delete_records(
"""select id from api_tokens where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_api_token,
"api token"
"""select id from api_tokens where app_id=:app_id limit 1000""", {"app_id": app_id}, del_api_token, "api token"
)
@ -113,44 +106,47 @@ def _delete_installed_apps(tenant_id: str, app_id: str):
"""select id from installed_apps where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_installed_app,
"installed app"
"installed app",
)
def _delete_recommended_apps(tenant_id: str, app_id: str):
def del_recommended_app(recommended_app_id: str):
db.session.query(RecommendedApp).filter(RecommendedApp.id == recommended_app_id).delete(
synchronize_session=False)
synchronize_session=False
)
_delete_records(
"""select id from recommended_apps where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_recommended_app,
"recommended app"
"recommended app",
)
def _delete_app_annotation_data(tenant_id: str, app_id: str):
def del_annotation_hit_history(annotation_hit_history_id: str):
db.session.query(AppAnnotationHitHistory).filter(
AppAnnotationHitHistory.id == annotation_hit_history_id).delete(synchronize_session=False)
AppAnnotationHitHistory.id == annotation_hit_history_id
).delete(synchronize_session=False)
_delete_records(
"""select id from app_annotation_hit_histories where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_annotation_hit_history,
"annotation hit history"
"annotation hit history",
)
def del_annotation_setting(annotation_setting_id: str):
db.session.query(AppAnnotationSetting).filter(AppAnnotationSetting.id == annotation_setting_id).delete(
synchronize_session=False)
synchronize_session=False
)
_delete_records(
"""select id from app_annotation_settings where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_annotation_setting,
"annotation setting"
"annotation setting",
)
@ -162,7 +158,7 @@ def _delete_app_dataset_joins(tenant_id: str, app_id: str):
"""select id from app_dataset_joins where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_dataset_join,
"dataset join"
"dataset join",
)
@ -174,7 +170,7 @@ def _delete_app_workflows(tenant_id: str, app_id: str):
"""select id from workflows where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_workflow,
"workflow"
"workflow",
)
@ -186,89 +182,93 @@ def _delete_app_workflow_runs(tenant_id: str, app_id: str):
"""select id from workflow_runs where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_workflow_run,
"workflow run"
"workflow run",
)
def _delete_app_workflow_node_executions(tenant_id: str, app_id: str):
def del_workflow_node_execution(workflow_node_execution_id: str):
db.session.query(WorkflowNodeExecution).filter(
WorkflowNodeExecution.id == workflow_node_execution_id).delete(synchronize_session=False)
db.session.query(WorkflowNodeExecution).filter(WorkflowNodeExecution.id == workflow_node_execution_id).delete(
synchronize_session=False
)
_delete_records(
"""select id from workflow_node_executions where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_workflow_node_execution,
"workflow node execution"
"workflow node execution",
)
def _delete_app_workflow_app_logs(tenant_id: str, app_id: str):
def del_workflow_app_log(workflow_app_log_id: str):
db.session.query(WorkflowAppLog).filter(WorkflowAppLog.id == workflow_app_log_id).delete(synchronize_session=False)
db.session.query(WorkflowAppLog).filter(WorkflowAppLog.id == workflow_app_log_id).delete(
synchronize_session=False
)
_delete_records(
"""select id from workflow_app_logs where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_workflow_app_log,
"workflow app log"
"workflow app log",
)
def _delete_app_conversations(tenant_id: str, app_id: str):
def del_conversation(conversation_id: str):
db.session.query(PinnedConversation).filter(PinnedConversation.conversation_id == conversation_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(Conversation).filter(Conversation.id == conversation_id).delete(synchronize_session=False)
_delete_records(
"""select id from conversations where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_conversation,
"conversation"
"conversation",
)
def _delete_conversation_variables(*, app_id: str):
stmt = delete(ConversationVariable).where(ConversationVariable.app_id == app_id)
with db.engine.connect() as conn:
conn.execute(stmt)
conn.commit()
logging.info(click.style(f"Deleted conversation variables for app {app_id}", fg='green'))
logging.info(click.style(f"Deleted conversation variables for app {app_id}", fg="green"))
def _delete_app_messages(tenant_id: str, app_id: str):
def del_message(message_id: str):
db.session.query(MessageFeedback).filter(MessageFeedback.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageAnnotation).filter(MessageAnnotation.message_id == message_id).delete(
synchronize_session=False)
db.session.query(MessageChain).filter(MessageChain.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageChain).filter(MessageChain.message_id == message_id).delete(synchronize_session=False)
db.session.query(MessageAgentThought).filter(MessageAgentThought.message_id == message_id).delete(
synchronize_session=False)
synchronize_session=False
)
db.session.query(MessageFile).filter(MessageFile.message_id == message_id).delete(synchronize_session=False)
db.session.query(SavedMessage).filter(SavedMessage.message_id == message_id).delete(
synchronize_session=False)
db.session.query(SavedMessage).filter(SavedMessage.message_id == message_id).delete(synchronize_session=False)
db.session.query(Message).filter(Message.id == message_id).delete()
_delete_records(
"""select id from messages where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_message,
"message"
"""select id from messages where app_id=:app_id limit 1000""", {"app_id": app_id}, del_message, "message"
)
def _delete_workflow_tool_providers(tenant_id: str, app_id: str):
def del_tool_provider(tool_provider_id: str):
db.session.query(WorkflowToolProvider).filter(WorkflowToolProvider.id == tool_provider_id).delete(
synchronize_session=False)
synchronize_session=False
)
_delete_records(
"""select id from tool_workflow_providers where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_tool_provider,
"tool workflow provider"
"tool workflow provider",
)
@ -280,7 +280,7 @@ def _delete_app_tag_bindings(tenant_id: str, app_id: str):
"""select id from tag_bindings where tenant_id=:tenant_id and target_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_tag_binding,
"tag binding"
"tag binding",
)
@ -292,20 +292,21 @@ def _delete_end_users(tenant_id: str, app_id: str):
"""select id from end_users where tenant_id=:tenant_id and app_id=:app_id limit 1000""",
{"tenant_id": tenant_id, "app_id": app_id},
del_end_user,
"end user"
"end user",
)
def _delete_trace_app_configs(tenant_id: str, app_id: str):
def del_trace_app_config(trace_app_config_id: str):
db.session.query(TraceAppConfig).filter(TraceAppConfig.id == trace_app_config_id).delete(
synchronize_session=False)
synchronize_session=False
)
_delete_records(
"""select id from trace_app_config where app_id=:app_id limit 1000""",
{"app_id": app_id},
del_trace_app_config,
"trace app config"
"trace app config",
)
@ -321,7 +322,7 @@ def _delete_records(query_sql: str, params: dict, delete_func: Callable, name: s
try:
delete_func(record_id)
db.session.commit()
logging.info(click.style(f"Deleted {name} {record_id}", fg='green'))
logging.info(click.style(f"Deleted {name} {record_id}", fg="green"))
except Exception:
logging.exception(f"Error occurred while deleting {name} {record_id}")
continue

View File

@ -11,7 +11,7 @@ from extensions.ext_redis import redis_client
from models.dataset import Document, DocumentSegment
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def remove_document_from_index_task(document_id: str):
"""
Async Remove document from index
@ -19,23 +19,23 @@ def remove_document_from_index_task(document_id: str):
Usage: remove_document_from_index.delay(document_id)
"""
logging.info(click.style('Start remove document segments from index: {}'.format(document_id), fg='green'))
logging.info(click.style("Start remove document segments from index: {}".format(document_id), fg="green"))
start_at = time.perf_counter()
document = db.session.query(Document).filter(Document.id == document_id).first()
if not document:
raise NotFound('Document not found')
raise NotFound("Document not found")
if document.indexing_status != 'completed':
if document.indexing_status != "completed":
return
indexing_cache_key = 'document_{}_indexing'.format(document.id)
indexing_cache_key = "document_{}_indexing".format(document.id)
try:
dataset = document.dataset
if not dataset:
raise Exception('Document has no dataset')
raise Exception("Document has no dataset")
index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()
@ -49,7 +49,10 @@ def remove_document_from_index_task(document_id: str):
end_at = time.perf_counter()
logging.info(
click.style('Document removed from index: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
click.style(
"Document removed from index: {} latency: {}".format(document.id, end_at - start_at), fg="green"
)
)
except Exception:
logging.exception("remove document from index failed")
if not document.archived:

View File

@ -13,7 +13,7 @@ from models.dataset import Dataset, Document, DocumentSegment
from services.feature_service import FeatureService
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
"""
Async process document
@ -27,22 +27,23 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
for document_id in document_ids:
retry_indexing_cache_key = 'document_{}_is_retried'.format(document_id)
retry_indexing_cache_key = "document_{}_is_retried".format(document_id)
# check document limit
features = FeatureService.get_features(dataset.tenant_id)
try:
if features.billing.enabled:
vector_space = features.vector_space
if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
@ -50,11 +51,10 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
redis_client.delete(retry_indexing_cache_key)
return
logging.info(click.style('Start retry document: {}'.format(document_id), fg='green'))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
logging.info(click.style("Start retry document: {}".format(document_id), fg="green"))
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
try:
if document:
# clean old data
@ -70,7 +70,7 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
db.session.delete(segment)
db.session.commit()
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
@ -79,13 +79,13 @@ def retry_document_indexing_task(dataset_id: str, document_ids: list[str]):
indexing_runner.run([document])
redis_client.delete(retry_indexing_cache_key)
except Exception as ex:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(ex)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
redis_client.delete(retry_indexing_cache_key)
pass
end_at = time.perf_counter()
logging.info(click.style('Retry dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
logging.info(click.style("Retry dataset: {} latency: {}".format(dataset_id, end_at - start_at), fg="green"))

View File

@ -13,7 +13,7 @@ from models.dataset import Dataset, Document, DocumentSegment
from services.feature_service import FeatureService
@shared_task(queue='dataset')
@shared_task(queue="dataset")
def sync_website_document_indexing_task(dataset_id: str, document_id: str):
"""
Async process document
@ -26,22 +26,23 @@ def sync_website_document_indexing_task(dataset_id: str, document_id: str):
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
sync_indexing_cache_key = 'document_{}_is_sync'.format(document_id)
sync_indexing_cache_key = "document_{}_is_sync".format(document_id)
# check document limit
features = FeatureService.get_features(dataset.tenant_id)
try:
if features.billing.enabled:
vector_space = features.vector_space
if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
raise ValueError(
"Your total number of documents plus the number of uploads have over the limit of "
"your subscription."
)
except Exception as e:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
if document:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(e)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
@ -49,11 +50,8 @@ def sync_website_document_indexing_task(dataset_id: str, document_id: str):
redis_client.delete(sync_indexing_cache_key)
return
logging.info(click.style('Start sync website document: {}'.format(document_id), fg='green'))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
logging.info(click.style("Start sync website document: {}".format(document_id), fg="green"))
document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
try:
if document:
# clean old data
@ -69,7 +67,7 @@ def sync_website_document_indexing_task(dataset_id: str, document_id: str):
db.session.delete(segment)
db.session.commit()
document.indexing_status = 'parsing'
document.indexing_status = "parsing"
document.processing_started_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
@ -78,13 +76,13 @@ def sync_website_document_indexing_task(dataset_id: str, document_id: str):
indexing_runner.run([document])
redis_client.delete(sync_indexing_cache_key)
except Exception as ex:
document.indexing_status = 'error'
document.indexing_status = "error"
document.error = str(ex)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
logging.info(click.style(str(ex), fg='yellow'))
logging.info(click.style(str(ex), fg="yellow"))
redis_client.delete(sync_indexing_cache_key)
pass
end_at = time.perf_counter()
logging.info(click.style('Sync document: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))
logging.info(click.style("Sync document: {} latency: {}".format(document_id, end_at - start_at), fg="green"))