This commit is contained in:
-LAN- 2024-11-14 13:40:46 +00:00 committed by GitHub
commit a3562af5fc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
23 changed files with 900 additions and 209 deletions

View File

@ -27,7 +27,6 @@ class DifyConfig(
# read from dotenv format config file
env_file=".env",
env_file_encoding="utf-8",
frozen=True,
# ignore extra attributes
extra="ignore",
)

View File

@ -11,7 +11,7 @@ from core.provider_manager import ProviderManager
class ModelConfigConverter:
@classmethod
def convert(cls, app_config: EasyUIBasedAppConfig, skip_check: bool = False) -> ModelConfigWithCredentialsEntity:
def convert(cls, app_config: EasyUIBasedAppConfig) -> ModelConfigWithCredentialsEntity:
"""
Convert app model config dict to entity.
:param app_config: app config
@ -38,27 +38,23 @@ class ModelConfigConverter:
)
if model_credentials is None:
if not skip_check:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
else:
model_credentials = {}
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
if not skip_check:
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = model_config.parameters
@ -76,7 +72,7 @@ class ModelConfigConverter:
model_schema = model_type_instance.get_model_schema(model_config.model, model_credentials)
if not skip_check and not model_schema:
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
return ModelConfigWithCredentialsEntity(

View File

@ -217,6 +217,7 @@ class WorkflowCycleManage:
).total_seconds()
db.session.commit()
db.session.add(workflow_run)
db.session.refresh(workflow_run)
db.session.close()

View File

@ -74,6 +74,8 @@ def to_prompt_message_content(
data = _to_url(f)
else:
data = _to_base64_data_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
return VideoPromptMessageContent(data=data, format=f.extension.lstrip("."))
case _:
raise ValueError("file type f.type is not supported")

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
@ -27,7 +28,7 @@ class TokenBufferMemory:
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> list[PromptMessage]:
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: max token limit

View File

@ -100,10 +100,10 @@ class ModelInstance:
def invoke_llm(
self,
prompt_messages: list[PromptMessage],
prompt_messages: Sequence[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -1,4 +1,5 @@
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Optional
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
@ -31,7 +32,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -60,7 +61,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
):
@ -90,7 +91,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -120,7 +121,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:

View File

@ -1,4 +1,5 @@
from abc import ABC
from collections.abc import Sequence
from enum import Enum
from typing import Optional
@ -57,6 +58,7 @@ class PromptMessageContentType(Enum):
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
DOCUMENT = "document"
class PromptMessageContent(BaseModel):
@ -107,7 +109,7 @@ class PromptMessage(ABC, BaseModel):
"""
role: PromptMessageRole
content: Optional[str | list[PromptMessageContent]] = None
content: Optional[str | Sequence[PromptMessageContent]] = None
name: Optional[str] = None
def is_empty(self) -> bool:

View File

@ -87,6 +87,9 @@ class ModelFeature(Enum):
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
DOCUMENT = "document"
VIDEO = "video"
AUDIO = "audio"
class DefaultParameterName(str, Enum):

View File

@ -2,7 +2,7 @@ import logging
import re
import time
from abc import abstractmethod
from collections.abc import Generator, Mapping
from collections.abc import Generator, Mapping, Sequence
from typing import Optional, Union
from pydantic import ConfigDict
@ -48,7 +48,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -169,7 +169,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -212,7 +212,7 @@ if you are not sure about the structure.
)
model_parameters.pop("response_format")
stop = stop or []
stop = list(stop) if stop is not None else []
stop.extend(["\n```", "```\n"])
block_prompts = block_prompts.replace("{{block}}", code_block)
@ -408,7 +408,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -479,7 +479,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
@ -601,7 +601,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -647,7 +647,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -694,7 +694,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -742,7 +742,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -8,6 +8,7 @@ features:
- agent-thought
- stream-tool-call
- vision
- audio
model_properties:
mode: chat
context_size: 128000

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import cast
from core.model_runtime.entities import (
@ -14,7 +15,7 @@ from core.prompt.simple_prompt_transform import ModelMode
class PromptMessageUtil:
@staticmethod
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: list[PromptMessage]) -> list[dict]:
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: Sequence[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param model_mode: model mode

View File

@ -118,11 +118,11 @@ class FileSegment(Segment):
@property
def log(self) -> str:
return str(self.value)
return ""
@property
def text(self) -> str:
return str(self.value)
return ""
class ArrayAnySegment(ArraySegment):
@ -155,3 +155,11 @@ class ArrayFileSegment(ArraySegment):
for item in self.value:
items.append(item.markdown)
return "\n".join(items)
@property
def log(self) -> str:
return ""
@property
def text(self) -> str:
return ""

View File

@ -39,7 +39,14 @@ class VisionConfig(BaseModel):
class PromptConfig(BaseModel):
jinja2_variables: Optional[list[VariableSelector]] = None
jinja2_variables: Sequence[VariableSelector] = Field(default_factory=list)
@field_validator("jinja2_variables", mode="before")
@classmethod
def convert_none_jinja2_variables(cls, v: Any):
if v is None:
return []
return v
class LLMNodeChatModelMessage(ChatModelMessage):
@ -53,7 +60,14 @@ class LLMNodeCompletionModelPromptTemplate(CompletionModelPromptTemplate):
class LLMNodeData(BaseNodeData):
model: ModelConfig
prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate
prompt_config: Optional[PromptConfig] = None
prompt_config: PromptConfig = Field(default_factory=PromptConfig)
memory: Optional[MemoryConfig] = None
context: ContextConfig
vision: VisionConfig = Field(default_factory=VisionConfig)
@field_validator("prompt_config", mode="before")
@classmethod
def convert_none_prompt_config(cls, v: Any):
if v is None:
return PromptConfig()
return v

View File

@ -24,3 +24,11 @@ class LLMModeRequiredError(LLMNodeError):
class NoPromptFoundError(LLMNodeError):
"""Raised when no prompt is found in the LLM configuration."""
class NotSupportedPromptTypeError(LLMNodeError):
"""Raised when the prompt type is not supported."""
class MemoryRolePrefixRequiredError(LLMNodeError):
"""Raised when memory role prefix is required for completion model."""

View File

@ -1,4 +1,5 @@
import json
import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
@ -6,21 +7,26 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
from core.entities.model_entities import ModelStatus
from core.entities.provider_entities import QuotaUnit
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file import FileType, file_manager
from core.helper.code_executor import CodeExecutor, CodeLanguage
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities import (
AudioPromptMessageContent,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
TextPromptMessageContent,
VideoPromptMessageContent,
)
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageRole,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.variables import (
@ -30,10 +36,13 @@ from core.variables import (
FileSegment,
NoneSegment,
ObjectSegment,
SegmentGroup,
StringSegment,
)
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.entities.variable_entities import VariableSelector
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.event import InNodeEvent
from core.workflow.nodes.base import BaseNode
@ -62,14 +71,18 @@ from .exc import (
InvalidVariableTypeError,
LLMModeRequiredError,
LLMNodeError,
MemoryRolePrefixRequiredError,
ModelNotExistError,
NoPromptFoundError,
NotSupportedPromptTypeError,
VariableNotFoundError,
)
if TYPE_CHECKING:
from core.file.models import File
logger = logging.getLogger(__name__)
class LLMNode(BaseNode[LLMNodeData]):
_node_data_cls = LLMNodeData
@ -131,9 +144,8 @@ class LLMNode(BaseNode[LLMNodeData]):
query = None
prompt_messages, stop = self._fetch_prompt_messages(
system_query=query,
inputs=inputs,
files=files,
user_query=query,
user_files=files,
context=context,
memory=memory,
model_config=model_config,
@ -181,6 +193,17 @@ class LLMNode(BaseNode[LLMNodeData]):
)
)
return
except Exception as e:
logger.exception(f"Node {self.node_id} failed to run: {e}")
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
inputs=node_inputs,
process_data=process_data,
)
)
return
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
@ -203,8 +226,8 @@ class LLMNode(BaseNode[LLMNodeData]):
self,
node_data_model: ModelConfig,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: Optional[list[str]] = None,
prompt_messages: Sequence[PromptMessage],
stop: Optional[Sequence[str]] = None,
) -> Generator[NodeEvent, None, None]:
db.session.close()
@ -519,9 +542,8 @@ class LLMNode(BaseNode[LLMNodeData]):
def _fetch_prompt_messages(
self,
*,
system_query: str | None = None,
inputs: dict[str, str] | None = None,
files: Sequence["File"],
user_query: str | None = None,
user_files: Sequence["File"],
context: str | None = None,
memory: TokenBufferMemory | None = None,
model_config: ModelConfigWithCredentialsEntity,
@ -529,60 +551,185 @@ class LLMNode(BaseNode[LLMNodeData]):
memory_config: MemoryConfig | None = None,
vision_enabled: bool = False,
vision_detail: ImagePromptMessageContent.DETAIL,
) -> tuple[list[PromptMessage], Optional[list[str]]]:
inputs = inputs or {}
) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
prompt_messages = []
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs=inputs,
query=system_query or "",
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config,
)
stop = model_config.stop
if isinstance(prompt_template, list):
# For chat model
prompt_messages.extend(self._handle_list_messages(messages=prompt_template, context=context))
# Get memory messages for chat mode
memory_messages = self._handle_memory_chat_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Extend prompt_messages with memory messages
prompt_messages.extend(memory_messages)
# Add current query to the prompt messages
if user_query:
prompt_messages.append(UserPromptMessage(content=[TextPromptMessageContent(data=user_query)]))
elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
# For completion model
prompt_messages.extend(self._handle_completion_template(template=prompt_template, context=context))
# Get memory text for completion model
memory_text = self._handle_memory_completion_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Insert histories into the prompt
prompt_content = prompt_messages[0].content
if "#histories#" in prompt_content:
prompt_content = prompt_content.replace("#histories#", memory_text)
else:
prompt_content = memory_text + "\n" + prompt_content
prompt_messages[0].content = prompt_content
# Add current query to the prompt message
if user_query:
prompt_content = prompt_messages[0].content.replace("#sys.query#", user_query)
prompt_messages[0].content = prompt_content
else:
errmsg = f"Prompt type {type(prompt_template)} is not supported"
logger.warning(errmsg)
raise NotSupportedPromptTypeError(errmsg)
if vision_enabled and user_files:
file_prompts = []
for file in user_files:
file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
file_prompts.append(file_prompt)
if (
len(prompt_messages) > 0
and isinstance(prompt_messages[-1], UserPromptMessage)
and isinstance(prompt_messages[-1].content, list)
):
prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
else:
prompt_messages.append(UserPromptMessage(content=file_prompts))
# Filter prompt messages
filtered_prompt_messages = []
for prompt_message in prompt_messages:
if prompt_message.is_empty():
continue
if not isinstance(prompt_message.content, str):
if isinstance(prompt_message.content, list):
prompt_message_content = []
for content_item in prompt_message.content or []:
# Skip image if vision is disabled
if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
for content_item in prompt_message.content:
# Skip content if features are not defined
if not model_config.model_schema.features:
if content_item.type != PromptMessageContentType.TEXT:
continue
prompt_message_content.append(content_item)
continue
if isinstance(content_item, ImagePromptMessageContent):
# Override vision config if LLM node has vision config,
# cuz vision detail is related to the configuration from FileUpload feature.
content_item.detail = vision_detail
prompt_message_content.append(content_item)
elif isinstance(
content_item, TextPromptMessageContent | AudioPromptMessageContent | VideoPromptMessageContent
# Skip content if corresponding feature is not supported
if (
(
content_item.type == PromptMessageContentType.IMAGE
and (not vision_enabled or ModelFeature.VISION not in model_config.model_schema.features)
)
or (
content_item.type == PromptMessageContentType.DOCUMENT
and ModelFeature.DOCUMENT not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.VIDEO
and ModelFeature.VIDEO not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.AUDIO
and ModelFeature.AUDIO not in model_config.model_schema.features
)
):
prompt_message_content.append(content_item)
if len(prompt_message_content) > 1:
prompt_message.content = prompt_message_content
elif (
len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
):
continue
prompt_message_content.append(content_item)
if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
prompt_message.content = prompt_message_content[0].data
else:
prompt_message.content = prompt_message_content
if prompt_message.is_empty():
continue
filtered_prompt_messages.append(prompt_message)
if not filtered_prompt_messages:
if len(filtered_prompt_messages) == 0:
raise NoPromptFoundError(
"No prompt found in the LLM configuration. "
"Please ensure a prompt is properly configured before proceeding."
)
stop = model_config.stop
return filtered_prompt_messages, stop
def _handle_memory_chat_mode(
self,
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> Sequence[PromptMessage]:
memory_messages = []
# Get messages from memory for chat model
if memory and memory_config:
rest_tokens = self._calculate_rest_token([], model_config)
memory_messages = memory.get_history_prompt_messages(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
)
return memory_messages
def _handle_memory_completion_mode(
self,
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> str:
memory_text = ""
# Get history text from memory for completion model
if memory and memory_config:
rest_tokens = self._calculate_rest_token([], model_config)
if not memory_config.role_prefix:
raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
memory_text = memory.get_history_prompt_text(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
human_prefix=memory_config.role_prefix.user,
ai_prefix=memory_config.role_prefix.assistant,
)
return memory_text
def _calculate_rest_token(
self, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
) -> int:
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(str(parameter_rule.use_template))
or 0
)
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
@classmethod
def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
provider_model_bundle = model_instance.provider_model_bundle
@ -715,3 +862,123 @@ class LLMNode(BaseNode[LLMNodeData]):
}
},
}
def _handle_list_messages(
self, *, messages: Sequence[LLMNodeChatModelMessage], context: Optional[str]
) -> Sequence[PromptMessage]:
prompt_messages = []
for message in messages:
if message.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=message.jinja2_text or "",
jinjia2_variables=self.node_data.prompt_config.jinja2_variables,
variable_pool=self.graph_runtime_state.variable_pool,
)
prompt_message = _combine_text_message_with_role(text=result_text, role=message.role)
prompt_messages.append(prompt_message)
else:
# Get segment group from basic message
segment_group = _render_basic_message(
template=message.text,
context=context,
variable_pool=self.graph_runtime_state.variable_pool,
)
# Process segments for images
file_contents = []
for segment in segment_group.value:
if isinstance(segment, ArrayFileSegment):
for file in segment.value:
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=self.node_data.vision.configs.detail
)
file_contents.append(file_content)
if isinstance(segment, FileSegment):
file = segment.value
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=self.node_data.vision.configs.detail
)
file_contents.append(file_content)
# Create message with text from all segments
plain_text = segment_group.text
if plain_text:
prompt_message = _combine_text_message_with_role(text=plain_text, role=message.role)
prompt_messages.append(prompt_message)
if file_contents:
# Create message with image contents
prompt_message = UserPromptMessage(content=file_contents)
prompt_messages.append(prompt_message)
return prompt_messages
def _handle_completion_template(
self, *, template: LLMNodeCompletionModelPromptTemplate, context: Optional[str]
) -> Sequence[PromptMessage]:
prompt_messages = []
if template.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=template.jinja2_text or "",
jinjia2_variables=self.node_data.prompt_config.jinja2_variables,
variable_pool=self.graph_runtime_state.variable_pool,
)
else:
result_text = _render_basic_message(
template=template.text,
context=context,
variable_pool=self.graph_runtime_state.variable_pool,
).text
prompt_message = _combine_text_message_with_role(text=result_text, role=PromptMessageRole.USER)
prompt_messages.append(prompt_message)
return prompt_messages
def _combine_text_message_with_role(*, text: str, role: PromptMessageRole):
match role:
case PromptMessageRole.USER:
return UserPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.ASSISTANT:
return AssistantPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.SYSTEM:
return SystemPromptMessage(content=[TextPromptMessageContent(data=text)])
raise NotImplementedError(f"Role {role} is not supported")
def _render_jinja2_message(
*,
template: str,
jinjia2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
):
if not template:
return ""
jinjia2_inputs = {}
for jinja2_variable in jinjia2_variables:
variable = variable_pool.get(jinja2_variable.value_selector)
jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
code_execute_resp = CodeExecutor.execute_workflow_code_template(
language=CodeLanguage.JINJA2,
code=template,
inputs=jinjia2_inputs,
)
result_text = code_execute_resp["result"]
return result_text
def _render_basic_message(
*,
template: str,
context: str | None,
variable_pool: VariablePool,
) -> SegmentGroup:
if not template:
return SegmentGroup(value=[])
if context:
template = template.replace("{#context#}", context)
return variable_pool.convert_template(template)

17
api/poetry.lock generated
View File

@ -2411,6 +2411,21 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "faker"
version = "32.1.0"
description = "Faker is a Python package that generates fake data for you."
optional = false
python-versions = ">=3.8"
files = [
{file = "Faker-32.1.0-py3-none-any.whl", hash = "sha256:c77522577863c264bdc9dad3a2a750ad3f7ee43ff8185072e482992288898814"},
{file = "faker-32.1.0.tar.gz", hash = "sha256:aac536ba04e6b7beb2332c67df78485fc29c1880ff723beac6d1efd45e2f10f5"},
]
[package.dependencies]
python-dateutil = ">=2.4"
typing-extensions = "*"
[[package]]
name = "fastapi"
version = "0.115.4"
@ -11005,4 +11020,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "f20bd678044926913dbbc24bd0cf22503a75817aa55f59457ff7822032139b77"
content-hash = "0ab603323ea1d83690d4ee61e6d199a2bca6f3e2cc4b454a4ebf99aa6f6907bd"

View File

@ -265,6 +265,7 @@ weaviate-client = "~3.21.0"
optional = true
[tool.poetry.group.dev.dependencies]
coverage = "~7.2.4"
faker = "~32.1.0"
pytest = "~8.3.2"
pytest-benchmark = "~4.0.0"
pytest-env = "~1.1.3"

View File

@ -11,7 +11,6 @@ from core.model_runtime.entities.message_entities import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.llm.llm import AzureAIStudioLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.azure_ai_studio import setup_azure_ai_studio_mock
@pytest.mark.parametrize("setup_azure_ai_studio_mock", [["chat"]], indirect=True)

View File

@ -4,29 +4,21 @@ import pytest
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureAIStudioRerankModel
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureRerankModel
def test_validate_credentials():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="azure-ai-studio-rerank-v1",
credentials={"api_key": "invalid_key", "api_base": os.getenv("AZURE_AI_STUDIO_API_BASE")},
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
def test_invoke_model():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
result = model.invoke(
model="azure-ai-studio-rerank-v1",

View File

@ -1,125 +1,480 @@
from collections.abc import Sequence
from typing import Optional
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom
from configs import dify_config
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import CustomConfiguration, SystemConfiguration
from core.file import File, FileTransferMethod, FileType
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType, ProviderModel
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
from core.workflow.nodes.end import EndStreamParam
from core.workflow.nodes.llm.entities import ContextConfig, LLMNodeData, ModelConfig, VisionConfig, VisionConfigOptions
from core.workflow.nodes.llm.entities import (
ContextConfig,
LLMNodeChatModelMessage,
LLMNodeData,
ModelConfig,
VisionConfig,
VisionConfigOptions,
)
from core.workflow.nodes.llm.node import LLMNode
from models.enums import UserFrom
from models.provider import ProviderType
from models.workflow import WorkflowType
from tests.unit_tests.core.workflow.nodes.llm.test_scenarios import LLMNodeTestScenario
class TestLLMNode:
@pytest.fixture
def llm_node(self):
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
class MockTokenBufferMemory:
def __init__(self, history_messages=None):
self.history_messages = history_messages or []
def test_fetch_files_with_file_segment(self, llm_node):
file = File(
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]:
if message_limit is not None:
return self.history_messages[-message_limit * 2 :]
return self.history_messages
@pytest.fixture
def llm_node():
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
@pytest.fixture
def model_config():
# Create actual provider and model type instances
model_provider_factory = ModelProviderFactory()
provider_instance = model_provider_factory.get_provider_instance("openai")
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
# Create a ProviderModelBundle
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id="1",
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(enabled=False),
custom_configuration=CustomConfiguration(provider=None),
model_settings=[],
),
provider_instance=provider_instance,
model_type_instance=model_type_instance,
)
# Create and return a ModelConfigWithCredentialsEntity
return ModelConfigWithCredentialsEntity(
provider="openai",
model="gpt-3.5-turbo",
model_schema=AIModelEntity(
model="gpt-3.5-turbo",
label=I18nObject(en_US="GPT-3.5 Turbo"),
model_type=ModelType.LLM,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={},
),
mode="chat",
credentials={},
parameters={},
provider_model_bundle=provider_model_bundle,
)
def test_fetch_files_with_file_segment(llm_node):
file = File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
def test_fetch_files_with_array_file_segment(llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
def test_fetch_files_with_none_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_array_any_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_non_existent_variable(llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
prompt_template = []
llm_node.node_data.prompt_template = prompt_template
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
]
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
fake_query = faker.sentence()
def test_fetch_files_with_array_file_segment(self, llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=fake_query,
user_files=files,
context=None,
memory=None,
model_config=model_config,
prompt_template=prompt_template,
memory_config=None,
vision_enabled=False,
vision_detail=fake_vision_detail,
)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
assert prompt_messages == [UserPromptMessage(content=fake_query)]
def test_fetch_files_with_none_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
# Setup dify config
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
dify_config.MULTIMODAL_SEND_VIDEO_FORMAT = "url"
def test_fetch_files_with_array_any_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
# Generate fake values for prompt template
fake_assistant_prompt = faker.sentence()
fake_query = faker.sentence()
fake_context = faker.sentence()
fake_window_size = faker.random_int(min=1, max=3)
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup mock memory with history messages
mock_history = [
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
]
def test_fetch_files_with_non_existent_variable(self, llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup memory configuration
memory_config = MemoryConfig(
role_prefix=MemoryConfig.RolePrefix(user="Human", assistant="Assistant"),
window=MemoryConfig.WindowConfig(enabled=True, size=fake_window_size),
query_prompt_template=None,
)
memory = MockTokenBufferMemory(history_messages=mock_history)
# Test scenarios covering different file input combinations
test_scenarios = [
LLMNodeTestScenario(
description="No files",
user_query=fake_query,
user_files=[],
features=[],
vision_enabled=False,
vision_detail=None,
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(content=fake_query),
],
),
LLMNodeTestScenario(
description="User files",
user_query=fake_query,
user_files=[
File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(
content=[
TextPromptMessageContent(data=fake_query),
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
],
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=[
UserPromptMessage(
content=[
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
]
+ mock_history[fake_window_size * -2 :]
+ [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File without vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File with video file and vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.VIDEO,
filename="test1.mp4",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
extension="mp4",
)
},
),
]
for scenario in test_scenarios:
model_config.model_schema.features = scenario.features
for k, v in scenario.file_variables.items():
selector = k.split(".")
llm_node.graph_runtime_state.variable_pool.add(selector, v)
# Call the method under test
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=scenario.user_query,
user_files=scenario.user_files,
context=fake_context,
memory=memory,
model_config=model_config,
prompt_template=scenario.prompt_template,
memory_config=memory_config,
vision_enabled=scenario.vision_enabled,
vision_detail=scenario.vision_detail,
)
# Verify the result
assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
assert (
prompt_messages == scenario.expected_messages
), f"Message content mismatch in scenario: {scenario.description}"

View File

@ -0,0 +1,25 @@
from collections.abc import Mapping, Sequence
from pydantic import BaseModel, Field
from core.file import File
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelFeature
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage
class LLMNodeTestScenario(BaseModel):
"""Test scenario for LLM node testing."""
description: str = Field(..., description="Description of the test scenario")
user_query: str = Field(..., description="User query input")
user_files: Sequence[File] = Field(default_factory=list, description="List of user files")
vision_enabled: bool = Field(default=False, description="Whether vision is enabled")
vision_detail: str | None = Field(None, description="Vision detail level if vision is enabled")
features: Sequence[ModelFeature] = Field(default_factory=list, description="List of model features")
window_size: int = Field(..., description="Window size for memory")
prompt_template: Sequence[LLMNodeChatModelMessage] = Field(..., description="Template for prompt messages")
file_variables: Mapping[str, File | Sequence[File]] = Field(
default_factory=dict, description="List of file variables"
)
expected_messages: Sequence[PromptMessage] = Field(..., description="Expected messages after processing")

View File

@ -44,12 +44,6 @@ export const fileUpload: FileUpload = ({
}
export const getFileExtension = (fileName: string, fileMimetype: string, isRemote?: boolean) => {
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
if (fileName) {
const fileNamePair = fileName.split('.')
const fileNamePairLength = fileNamePair.length
@ -58,6 +52,12 @@ export const getFileExtension = (fileName: string, fileMimetype: string, isRemot
return fileNamePair[fileNamePairLength - 1]
}
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
return ''
}