mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat(llm_node): allow to use image file directly in the prompt.
This commit is contained in:
parent
bab989e3b3
commit
d6c9ab8554
|
@ -1,4 +1,5 @@
|
||||||
import json
|
import json
|
||||||
|
import logging
|
||||||
from collections.abc import Generator, Mapping, Sequence
|
from collections.abc import Generator, Mapping, Sequence
|
||||||
from typing import TYPE_CHECKING, Any, Optional, cast
|
from typing import TYPE_CHECKING, Any, Optional, cast
|
||||||
|
|
||||||
|
@ -6,21 +7,26 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
|
||||||
from core.entities.model_entities import ModelStatus
|
from core.entities.model_entities import ModelStatus
|
||||||
from core.entities.provider_entities import QuotaUnit
|
from core.entities.provider_entities import QuotaUnit
|
||||||
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
|
||||||
|
from core.file import FileType, file_manager
|
||||||
|
from core.helper.code_executor import CodeExecutor, CodeLanguage
|
||||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||||
from core.model_manager import ModelInstance, ModelManager
|
from core.model_manager import ModelInstance, ModelManager
|
||||||
from core.model_runtime.entities import (
|
from core.model_runtime.entities import (
|
||||||
AudioPromptMessageContent,
|
|
||||||
ImagePromptMessageContent,
|
ImagePromptMessageContent,
|
||||||
PromptMessage,
|
PromptMessage,
|
||||||
PromptMessageContentType,
|
PromptMessageContentType,
|
||||||
TextPromptMessageContent,
|
TextPromptMessageContent,
|
||||||
VideoPromptMessageContent,
|
|
||||||
)
|
)
|
||||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
|
||||||
from core.model_runtime.entities.model_entities import ModelType
|
from core.model_runtime.entities.message_entities import (
|
||||||
|
AssistantPromptMessage,
|
||||||
|
PromptMessageRole,
|
||||||
|
SystemPromptMessage,
|
||||||
|
UserPromptMessage,
|
||||||
|
)
|
||||||
|
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
||||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||||
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
|
|
||||||
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
|
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
|
||||||
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
from core.prompt.utils.prompt_message_util import PromptMessageUtil
|
||||||
from core.variables import (
|
from core.variables import (
|
||||||
|
@ -30,10 +36,13 @@ from core.variables import (
|
||||||
FileSegment,
|
FileSegment,
|
||||||
NoneSegment,
|
NoneSegment,
|
||||||
ObjectSegment,
|
ObjectSegment,
|
||||||
|
SegmentGroup,
|
||||||
StringSegment,
|
StringSegment,
|
||||||
)
|
)
|
||||||
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
|
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
|
||||||
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
|
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
|
||||||
|
from core.workflow.entities.variable_entities import VariableSelector
|
||||||
|
from core.workflow.entities.variable_pool import VariablePool
|
||||||
from core.workflow.enums import SystemVariableKey
|
from core.workflow.enums import SystemVariableKey
|
||||||
from core.workflow.graph_engine.entities.event import InNodeEvent
|
from core.workflow.graph_engine.entities.event import InNodeEvent
|
||||||
from core.workflow.nodes.base import BaseNode
|
from core.workflow.nodes.base import BaseNode
|
||||||
|
@ -62,14 +71,18 @@ from .exc import (
|
||||||
InvalidVariableTypeError,
|
InvalidVariableTypeError,
|
||||||
LLMModeRequiredError,
|
LLMModeRequiredError,
|
||||||
LLMNodeError,
|
LLMNodeError,
|
||||||
|
MemoryRolePrefixRequiredError,
|
||||||
ModelNotExistError,
|
ModelNotExistError,
|
||||||
NoPromptFoundError,
|
NoPromptFoundError,
|
||||||
|
NotSupportedPromptTypeError,
|
||||||
VariableNotFoundError,
|
VariableNotFoundError,
|
||||||
)
|
)
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from core.file.models import File
|
from core.file.models import File
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class LLMNode(BaseNode[LLMNodeData]):
|
class LLMNode(BaseNode[LLMNodeData]):
|
||||||
_node_data_cls = LLMNodeData
|
_node_data_cls = LLMNodeData
|
||||||
|
@ -131,9 +144,8 @@ class LLMNode(BaseNode[LLMNodeData]):
|
||||||
query = None
|
query = None
|
||||||
|
|
||||||
prompt_messages, stop = self._fetch_prompt_messages(
|
prompt_messages, stop = self._fetch_prompt_messages(
|
||||||
system_query=query,
|
user_query=query,
|
||||||
inputs=inputs,
|
user_files=files,
|
||||||
files=files,
|
|
||||||
context=context,
|
context=context,
|
||||||
memory=memory,
|
memory=memory,
|
||||||
model_config=model_config,
|
model_config=model_config,
|
||||||
|
@ -203,7 +215,7 @@ class LLMNode(BaseNode[LLMNodeData]):
|
||||||
self,
|
self,
|
||||||
node_data_model: ModelConfig,
|
node_data_model: ModelConfig,
|
||||||
model_instance: ModelInstance,
|
model_instance: ModelInstance,
|
||||||
prompt_messages: list[PromptMessage],
|
prompt_messages: Sequence[PromptMessage],
|
||||||
stop: Optional[Sequence[str]] = None,
|
stop: Optional[Sequence[str]] = None,
|
||||||
) -> Generator[NodeEvent, None, None]:
|
) -> Generator[NodeEvent, None, None]:
|
||||||
db.session.close()
|
db.session.close()
|
||||||
|
@ -519,9 +531,8 @@ class LLMNode(BaseNode[LLMNodeData]):
|
||||||
def _fetch_prompt_messages(
|
def _fetch_prompt_messages(
|
||||||
self,
|
self,
|
||||||
*,
|
*,
|
||||||
system_query: str | None = None,
|
user_query: str | None = None,
|
||||||
inputs: dict[str, str] | None = None,
|
user_files: Sequence["File"],
|
||||||
files: Sequence["File"],
|
|
||||||
context: str | None = None,
|
context: str | None = None,
|
||||||
memory: TokenBufferMemory | None = None,
|
memory: TokenBufferMemory | None = None,
|
||||||
model_config: ModelConfigWithCredentialsEntity,
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
|
@ -529,60 +540,161 @@ class LLMNode(BaseNode[LLMNodeData]):
|
||||||
memory_config: MemoryConfig | None = None,
|
memory_config: MemoryConfig | None = None,
|
||||||
vision_enabled: bool = False,
|
vision_enabled: bool = False,
|
||||||
vision_detail: ImagePromptMessageContent.DETAIL,
|
vision_detail: ImagePromptMessageContent.DETAIL,
|
||||||
) -> tuple[list[PromptMessage], Optional[list[str]]]:
|
) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
|
||||||
inputs = inputs or {}
|
prompt_messages = []
|
||||||
|
|
||||||
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
|
if isinstance(prompt_template, list):
|
||||||
prompt_messages = prompt_transform.get_prompt(
|
# For chat model
|
||||||
prompt_template=prompt_template,
|
prompt_messages.extend(self._handle_list_messages(messages=prompt_template, context=context))
|
||||||
inputs=inputs,
|
|
||||||
query=system_query or "",
|
# Get memory messages for chat mode
|
||||||
files=files,
|
memory_messages = self._handle_memory_chat_mode(
|
||||||
context=context,
|
memory=memory,
|
||||||
memory_config=memory_config,
|
memory_config=memory_config,
|
||||||
memory=memory,
|
model_config=model_config,
|
||||||
model_config=model_config,
|
)
|
||||||
)
|
# Extend prompt_messages with memory messages
|
||||||
stop = model_config.stop
|
prompt_messages.extend(memory_messages)
|
||||||
|
|
||||||
|
# Add current query to the prompt messages
|
||||||
|
if user_query:
|
||||||
|
prompt_messages.append(UserPromptMessage(content=[TextPromptMessageContent(data=user_query)]))
|
||||||
|
|
||||||
|
elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
|
||||||
|
# For completion model
|
||||||
|
prompt_messages.extend(self._handle_completion_template(template=prompt_template, context=context))
|
||||||
|
|
||||||
|
# Get memory text for completion model
|
||||||
|
memory_text = self._handle_memory_completion_mode(
|
||||||
|
memory=memory,
|
||||||
|
memory_config=memory_config,
|
||||||
|
model_config=model_config,
|
||||||
|
)
|
||||||
|
# Insert histories into the prompt
|
||||||
|
prompt_content = prompt_messages[0].content
|
||||||
|
if "#histories#" in prompt_content:
|
||||||
|
prompt_content = prompt_content.replace("#histories#", memory_text)
|
||||||
|
else:
|
||||||
|
prompt_content = memory_text + "\n" + prompt_content
|
||||||
|
prompt_messages[0].content = prompt_content
|
||||||
|
|
||||||
|
# Add current query to the prompt message
|
||||||
|
if user_query:
|
||||||
|
prompt_content = prompt_messages[0].content.replace("#sys.query#", user_query)
|
||||||
|
prompt_messages[0].content = prompt_content
|
||||||
|
else:
|
||||||
|
errmsg = f"Prompt type {type(prompt_template)} is not supported"
|
||||||
|
logger.warning(errmsg)
|
||||||
|
raise NotSupportedPromptTypeError(errmsg)
|
||||||
|
|
||||||
|
if vision_enabled and user_files:
|
||||||
|
file_prompts = []
|
||||||
|
for file in user_files:
|
||||||
|
file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
|
||||||
|
file_prompts.append(file_prompt)
|
||||||
|
if (
|
||||||
|
len(prompt_messages) > 0
|
||||||
|
and isinstance(prompt_messages[-1], UserPromptMessage)
|
||||||
|
and isinstance(prompt_messages[-1].content, list)
|
||||||
|
):
|
||||||
|
prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
|
||||||
|
else:
|
||||||
|
prompt_messages.append(UserPromptMessage(content=file_prompts))
|
||||||
|
|
||||||
|
# Filter prompt messages
|
||||||
filtered_prompt_messages = []
|
filtered_prompt_messages = []
|
||||||
for prompt_message in prompt_messages:
|
for prompt_message in prompt_messages:
|
||||||
if prompt_message.is_empty():
|
if isinstance(prompt_message.content, list):
|
||||||
continue
|
|
||||||
|
|
||||||
if not isinstance(prompt_message.content, str):
|
|
||||||
prompt_message_content = []
|
prompt_message_content = []
|
||||||
for content_item in prompt_message.content or []:
|
for content_item in prompt_message.content:
|
||||||
# Skip image if vision is disabled
|
# Skip image if vision is disabled
|
||||||
if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
|
if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
|
||||||
continue
|
continue
|
||||||
|
prompt_message_content.append(content_item)
|
||||||
if isinstance(content_item, ImagePromptMessageContent):
|
if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
|
||||||
# Override vision config if LLM node has vision config,
|
|
||||||
# cuz vision detail is related to the configuration from FileUpload feature.
|
|
||||||
content_item.detail = vision_detail
|
|
||||||
prompt_message_content.append(content_item)
|
|
||||||
elif isinstance(
|
|
||||||
content_item, TextPromptMessageContent | AudioPromptMessageContent | VideoPromptMessageContent
|
|
||||||
):
|
|
||||||
prompt_message_content.append(content_item)
|
|
||||||
|
|
||||||
if len(prompt_message_content) > 1:
|
|
||||||
prompt_message.content = prompt_message_content
|
|
||||||
elif (
|
|
||||||
len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
|
|
||||||
):
|
|
||||||
prompt_message.content = prompt_message_content[0].data
|
prompt_message.content = prompt_message_content[0].data
|
||||||
|
else:
|
||||||
|
prompt_message.content = prompt_message_content
|
||||||
|
if prompt_message.is_empty():
|
||||||
|
continue
|
||||||
filtered_prompt_messages.append(prompt_message)
|
filtered_prompt_messages.append(prompt_message)
|
||||||
|
|
||||||
if not filtered_prompt_messages:
|
if len(filtered_prompt_messages) == 0:
|
||||||
raise NoPromptFoundError(
|
raise NoPromptFoundError(
|
||||||
"No prompt found in the LLM configuration. "
|
"No prompt found in the LLM configuration. "
|
||||||
"Please ensure a prompt is properly configured before proceeding."
|
"Please ensure a prompt is properly configured before proceeding."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
stop = model_config.stop
|
||||||
return filtered_prompt_messages, stop
|
return filtered_prompt_messages, stop
|
||||||
|
|
||||||
|
def _handle_memory_chat_mode(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
memory: TokenBufferMemory | None,
|
||||||
|
memory_config: MemoryConfig | None,
|
||||||
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
|
) -> Sequence[PromptMessage]:
|
||||||
|
memory_messages = []
|
||||||
|
# Get messages from memory for chat model
|
||||||
|
if memory and memory_config:
|
||||||
|
rest_tokens = self._calculate_rest_token([], model_config)
|
||||||
|
memory_messages = memory.get_history_prompt_messages(
|
||||||
|
max_token_limit=rest_tokens,
|
||||||
|
message_limit=memory_config.window.size if memory_config.window.enabled else None,
|
||||||
|
)
|
||||||
|
return memory_messages
|
||||||
|
|
||||||
|
def _handle_memory_completion_mode(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
memory: TokenBufferMemory | None,
|
||||||
|
memory_config: MemoryConfig | None,
|
||||||
|
model_config: ModelConfigWithCredentialsEntity,
|
||||||
|
) -> str:
|
||||||
|
memory_text = ""
|
||||||
|
# Get history text from memory for completion model
|
||||||
|
if memory and memory_config:
|
||||||
|
rest_tokens = self._calculate_rest_token([], model_config)
|
||||||
|
if not memory_config.role_prefix:
|
||||||
|
raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
|
||||||
|
memory_text = memory.get_history_prompt_text(
|
||||||
|
max_token_limit=rest_tokens,
|
||||||
|
message_limit=memory_config.window.size if memory_config.window.enabled else None,
|
||||||
|
human_prefix=memory_config.role_prefix.user,
|
||||||
|
ai_prefix=memory_config.role_prefix.assistant,
|
||||||
|
)
|
||||||
|
return memory_text
|
||||||
|
|
||||||
|
def _calculate_rest_token(
|
||||||
|
self, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
|
||||||
|
) -> int:
|
||||||
|
rest_tokens = 2000
|
||||||
|
|
||||||
|
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
|
||||||
|
if model_context_tokens:
|
||||||
|
model_instance = ModelInstance(
|
||||||
|
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
|
||||||
|
)
|
||||||
|
|
||||||
|
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
|
||||||
|
|
||||||
|
max_tokens = 0
|
||||||
|
for parameter_rule in model_config.model_schema.parameter_rules:
|
||||||
|
if parameter_rule.name == "max_tokens" or (
|
||||||
|
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
|
||||||
|
):
|
||||||
|
max_tokens = (
|
||||||
|
model_config.parameters.get(parameter_rule.name)
|
||||||
|
or model_config.parameters.get(str(parameter_rule.use_template))
|
||||||
|
or 0
|
||||||
|
)
|
||||||
|
|
||||||
|
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
|
||||||
|
rest_tokens = max(rest_tokens, 0)
|
||||||
|
|
||||||
|
return rest_tokens
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
|
def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
|
||||||
provider_model_bundle = model_instance.provider_model_bundle
|
provider_model_bundle = model_instance.provider_model_bundle
|
||||||
|
@ -715,3 +827,121 @@ class LLMNode(BaseNode[LLMNodeData]):
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
def _handle_list_messages(
|
||||||
|
self, *, messages: Sequence[LLMNodeChatModelMessage], context: Optional[str]
|
||||||
|
) -> Sequence[PromptMessage]:
|
||||||
|
prompt_messages = []
|
||||||
|
for message in messages:
|
||||||
|
if message.edition_type == "jinja2":
|
||||||
|
result_text = _render_jinja2_message(
|
||||||
|
template=message.jinja2_text or "",
|
||||||
|
jinjia2_variables=self.node_data.prompt_config.jinja2_variables,
|
||||||
|
variable_pool=self.graph_runtime_state.variable_pool,
|
||||||
|
)
|
||||||
|
prompt_message = _combine_text_message_with_role(text=result_text, role=message.role)
|
||||||
|
prompt_messages.append(prompt_message)
|
||||||
|
else:
|
||||||
|
# Get segment group from basic message
|
||||||
|
segment_group = _render_basic_message(
|
||||||
|
template=message.text,
|
||||||
|
context=context,
|
||||||
|
variable_pool=self.graph_runtime_state.variable_pool,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process segments for images
|
||||||
|
image_contents = []
|
||||||
|
for segment in segment_group.value:
|
||||||
|
if isinstance(segment, ArrayFileSegment):
|
||||||
|
for file in segment.value:
|
||||||
|
if file.type == FileType.IMAGE:
|
||||||
|
image_content = file_manager.to_prompt_message_content(
|
||||||
|
file, image_detail_config=self.node_data.vision.configs.detail
|
||||||
|
)
|
||||||
|
image_contents.append(image_content)
|
||||||
|
if isinstance(segment, FileSegment):
|
||||||
|
file = segment.value
|
||||||
|
if file.type == FileType.IMAGE:
|
||||||
|
image_content = file_manager.to_prompt_message_content(
|
||||||
|
file, image_detail_config=self.node_data.vision.configs.detail
|
||||||
|
)
|
||||||
|
image_contents.append(image_content)
|
||||||
|
|
||||||
|
# Create message with text from all segments
|
||||||
|
prompt_message = _combine_text_message_with_role(text=segment_group.text, role=message.role)
|
||||||
|
prompt_messages.append(prompt_message)
|
||||||
|
|
||||||
|
if image_contents:
|
||||||
|
# Create message with image contents
|
||||||
|
prompt_message = UserPromptMessage(content=image_contents)
|
||||||
|
prompt_messages.append(prompt_message)
|
||||||
|
|
||||||
|
return prompt_messages
|
||||||
|
|
||||||
|
def _handle_completion_template(
|
||||||
|
self, *, template: LLMNodeCompletionModelPromptTemplate, context: Optional[str]
|
||||||
|
) -> Sequence[PromptMessage]:
|
||||||
|
prompt_messages = []
|
||||||
|
if template.edition_type == "jinja2":
|
||||||
|
result_text = _render_jinja2_message(
|
||||||
|
template=template.jinja2_text or "",
|
||||||
|
jinjia2_variables=self.node_data.prompt_config.jinja2_variables,
|
||||||
|
variable_pool=self.graph_runtime_state.variable_pool,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
result_text = _render_basic_message(
|
||||||
|
template=template.text,
|
||||||
|
context=context,
|
||||||
|
variable_pool=self.graph_runtime_state.variable_pool,
|
||||||
|
).text
|
||||||
|
prompt_message = _combine_text_message_with_role(text=result_text, role=PromptMessageRole.USER)
|
||||||
|
prompt_messages.append(prompt_message)
|
||||||
|
return prompt_messages
|
||||||
|
|
||||||
|
|
||||||
|
def _combine_text_message_with_role(*, text: str, role: PromptMessageRole):
|
||||||
|
match role:
|
||||||
|
case PromptMessageRole.USER:
|
||||||
|
return UserPromptMessage(content=[TextPromptMessageContent(data=text)])
|
||||||
|
case PromptMessageRole.ASSISTANT:
|
||||||
|
return AssistantPromptMessage(content=[TextPromptMessageContent(data=text)])
|
||||||
|
case PromptMessageRole.SYSTEM:
|
||||||
|
return SystemPromptMessage(content=[TextPromptMessageContent(data=text)])
|
||||||
|
raise NotImplementedError(f"Role {role} is not supported")
|
||||||
|
|
||||||
|
|
||||||
|
def _render_jinja2_message(
|
||||||
|
*,
|
||||||
|
template: str,
|
||||||
|
jinjia2_variables: Sequence[VariableSelector],
|
||||||
|
variable_pool: VariablePool,
|
||||||
|
):
|
||||||
|
if not template:
|
||||||
|
return ""
|
||||||
|
|
||||||
|
jinjia2_inputs = {}
|
||||||
|
for jinja2_variable in jinjia2_variables:
|
||||||
|
variable = variable_pool.get(jinja2_variable.value_selector)
|
||||||
|
jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
|
||||||
|
code_execute_resp = CodeExecutor.execute_workflow_code_template(
|
||||||
|
language=CodeLanguage.JINJA2,
|
||||||
|
code=template,
|
||||||
|
inputs=jinjia2_inputs,
|
||||||
|
)
|
||||||
|
result_text = code_execute_resp["result"]
|
||||||
|
return result_text
|
||||||
|
|
||||||
|
|
||||||
|
def _render_basic_message(
|
||||||
|
*,
|
||||||
|
template: str,
|
||||||
|
context: str | None,
|
||||||
|
variable_pool: VariablePool,
|
||||||
|
) -> SegmentGroup:
|
||||||
|
if not template:
|
||||||
|
return SegmentGroup(value=[])
|
||||||
|
|
||||||
|
if context:
|
||||||
|
template = template.replace("{#context#}", context)
|
||||||
|
|
||||||
|
return variable_pool.convert_template(template)
|
||||||
|
|
|
@ -1,125 +1,401 @@
|
||||||
|
from collections.abc import Sequence
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
from configs import dify_config
|
||||||
|
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
|
||||||
|
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
|
||||||
|
from core.entities.provider_entities import CustomConfiguration, SystemConfiguration
|
||||||
from core.file import File, FileTransferMethod, FileType
|
from core.file import File, FileTransferMethod, FileType
|
||||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
from core.model_runtime.entities.common_entities import I18nObject
|
||||||
|
from core.model_runtime.entities.message_entities import (
|
||||||
|
AssistantPromptMessage,
|
||||||
|
ImagePromptMessageContent,
|
||||||
|
PromptMessage,
|
||||||
|
PromptMessageRole,
|
||||||
|
SystemPromptMessage,
|
||||||
|
TextPromptMessageContent,
|
||||||
|
UserPromptMessage,
|
||||||
|
)
|
||||||
|
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType
|
||||||
|
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
|
||||||
|
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
|
||||||
|
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
|
||||||
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
|
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
|
||||||
from core.workflow.entities.variable_pool import VariablePool
|
from core.workflow.entities.variable_pool import VariablePool
|
||||||
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
|
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
|
||||||
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
|
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
|
||||||
from core.workflow.nodes.end import EndStreamParam
|
from core.workflow.nodes.end import EndStreamParam
|
||||||
from core.workflow.nodes.llm.entities import ContextConfig, LLMNodeData, ModelConfig, VisionConfig, VisionConfigOptions
|
from core.workflow.nodes.llm.entities import (
|
||||||
|
ContextConfig,
|
||||||
|
LLMNodeChatModelMessage,
|
||||||
|
LLMNodeData,
|
||||||
|
ModelConfig,
|
||||||
|
VisionConfig,
|
||||||
|
VisionConfigOptions,
|
||||||
|
)
|
||||||
from core.workflow.nodes.llm.node import LLMNode
|
from core.workflow.nodes.llm.node import LLMNode
|
||||||
from models.enums import UserFrom
|
from models.enums import UserFrom
|
||||||
|
from models.provider import ProviderType
|
||||||
from models.workflow import WorkflowType
|
from models.workflow import WorkflowType
|
||||||
|
|
||||||
|
|
||||||
class TestLLMNode:
|
class MockTokenBufferMemory:
|
||||||
@pytest.fixture
|
def __init__(self, history_messages=None):
|
||||||
def llm_node(self):
|
self.history_messages = history_messages or []
|
||||||
data = LLMNodeData(
|
|
||||||
title="Test LLM",
|
|
||||||
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
|
|
||||||
prompt_template=[],
|
|
||||||
memory=None,
|
|
||||||
context=ContextConfig(enabled=False),
|
|
||||||
vision=VisionConfig(
|
|
||||||
enabled=True,
|
|
||||||
configs=VisionConfigOptions(
|
|
||||||
variable_selector=["sys", "files"],
|
|
||||||
detail=ImagePromptMessageContent.DETAIL.HIGH,
|
|
||||||
),
|
|
||||||
),
|
|
||||||
)
|
|
||||||
variable_pool = VariablePool(
|
|
||||||
system_variables={},
|
|
||||||
user_inputs={},
|
|
||||||
)
|
|
||||||
node = LLMNode(
|
|
||||||
id="1",
|
|
||||||
config={
|
|
||||||
"id": "1",
|
|
||||||
"data": data.model_dump(),
|
|
||||||
},
|
|
||||||
graph_init_params=GraphInitParams(
|
|
||||||
tenant_id="1",
|
|
||||||
app_id="1",
|
|
||||||
workflow_type=WorkflowType.WORKFLOW,
|
|
||||||
workflow_id="1",
|
|
||||||
graph_config={},
|
|
||||||
user_id="1",
|
|
||||||
user_from=UserFrom.ACCOUNT,
|
|
||||||
invoke_from=InvokeFrom.SERVICE_API,
|
|
||||||
call_depth=0,
|
|
||||||
),
|
|
||||||
graph=Graph(
|
|
||||||
root_node_id="1",
|
|
||||||
answer_stream_generate_routes=AnswerStreamGenerateRoute(
|
|
||||||
answer_dependencies={},
|
|
||||||
answer_generate_route={},
|
|
||||||
),
|
|
||||||
end_stream_param=EndStreamParam(
|
|
||||||
end_dependencies={},
|
|
||||||
end_stream_variable_selector_mapping={},
|
|
||||||
),
|
|
||||||
),
|
|
||||||
graph_runtime_state=GraphRuntimeState(
|
|
||||||
variable_pool=variable_pool,
|
|
||||||
start_at=0,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
return node
|
|
||||||
|
|
||||||
def test_fetch_files_with_file_segment(self, llm_node):
|
def get_history_prompt_messages(
|
||||||
file = File(
|
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
|
||||||
|
) -> Sequence[PromptMessage]:
|
||||||
|
if message_limit is not None:
|
||||||
|
return self.history_messages[-message_limit * 2 :]
|
||||||
|
return self.history_messages
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def llm_node():
|
||||||
|
data = LLMNodeData(
|
||||||
|
title="Test LLM",
|
||||||
|
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
|
||||||
|
prompt_template=[],
|
||||||
|
memory=None,
|
||||||
|
context=ContextConfig(enabled=False),
|
||||||
|
vision=VisionConfig(
|
||||||
|
enabled=True,
|
||||||
|
configs=VisionConfigOptions(
|
||||||
|
variable_selector=["sys", "files"],
|
||||||
|
detail=ImagePromptMessageContent.DETAIL.HIGH,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
variable_pool = VariablePool(
|
||||||
|
system_variables={},
|
||||||
|
user_inputs={},
|
||||||
|
)
|
||||||
|
node = LLMNode(
|
||||||
|
id="1",
|
||||||
|
config={
|
||||||
|
"id": "1",
|
||||||
|
"data": data.model_dump(),
|
||||||
|
},
|
||||||
|
graph_init_params=GraphInitParams(
|
||||||
|
tenant_id="1",
|
||||||
|
app_id="1",
|
||||||
|
workflow_type=WorkflowType.WORKFLOW,
|
||||||
|
workflow_id="1",
|
||||||
|
graph_config={},
|
||||||
|
user_id="1",
|
||||||
|
user_from=UserFrom.ACCOUNT,
|
||||||
|
invoke_from=InvokeFrom.SERVICE_API,
|
||||||
|
call_depth=0,
|
||||||
|
),
|
||||||
|
graph=Graph(
|
||||||
|
root_node_id="1",
|
||||||
|
answer_stream_generate_routes=AnswerStreamGenerateRoute(
|
||||||
|
answer_dependencies={},
|
||||||
|
answer_generate_route={},
|
||||||
|
),
|
||||||
|
end_stream_param=EndStreamParam(
|
||||||
|
end_dependencies={},
|
||||||
|
end_stream_variable_selector_mapping={},
|
||||||
|
),
|
||||||
|
),
|
||||||
|
graph_runtime_state=GraphRuntimeState(
|
||||||
|
variable_pool=variable_pool,
|
||||||
|
start_at=0,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
return node
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def model_config():
|
||||||
|
# Create actual provider and model type instances
|
||||||
|
model_provider_factory = ModelProviderFactory()
|
||||||
|
provider_instance = model_provider_factory.get_provider_instance("openai")
|
||||||
|
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
||||||
|
|
||||||
|
# Create a ProviderModelBundle
|
||||||
|
provider_model_bundle = ProviderModelBundle(
|
||||||
|
configuration=ProviderConfiguration(
|
||||||
|
tenant_id="1",
|
||||||
|
provider=provider_instance.get_provider_schema(),
|
||||||
|
preferred_provider_type=ProviderType.CUSTOM,
|
||||||
|
using_provider_type=ProviderType.CUSTOM,
|
||||||
|
system_configuration=SystemConfiguration(enabled=False),
|
||||||
|
custom_configuration=CustomConfiguration(provider=None),
|
||||||
|
model_settings=[],
|
||||||
|
),
|
||||||
|
provider_instance=provider_instance,
|
||||||
|
model_type_instance=model_type_instance,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create and return a ModelConfigWithCredentialsEntity
|
||||||
|
return ModelConfigWithCredentialsEntity(
|
||||||
|
provider="openai",
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
model_schema=AIModelEntity(
|
||||||
|
model="gpt-3.5-turbo",
|
||||||
|
label=I18nObject(en_US="GPT-3.5 Turbo"),
|
||||||
|
model_type=ModelType.LLM,
|
||||||
|
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
|
||||||
|
model_properties={},
|
||||||
|
),
|
||||||
|
mode="chat",
|
||||||
|
credentials={},
|
||||||
|
parameters={},
|
||||||
|
provider_model_bundle=provider_model_bundle,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_files_with_file_segment(llm_node):
|
||||||
|
file = File(
|
||||||
|
id="1",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="test.jpg",
|
||||||
|
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||||
|
related_id="1",
|
||||||
|
)
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
|
||||||
|
|
||||||
|
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||||
|
assert result == [file]
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_files_with_array_file_segment(llm_node):
|
||||||
|
files = [
|
||||||
|
File(
|
||||||
id="1",
|
id="1",
|
||||||
tenant_id="test",
|
tenant_id="test",
|
||||||
type=FileType.IMAGE,
|
type=FileType.IMAGE,
|
||||||
filename="test.jpg",
|
filename="test1.jpg",
|
||||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||||
related_id="1",
|
related_id="1",
|
||||||
|
),
|
||||||
|
File(
|
||||||
|
id="2",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="test2.jpg",
|
||||||
|
transfer_method=FileTransferMethod.LOCAL_FILE,
|
||||||
|
related_id="2",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
|
||||||
|
|
||||||
|
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||||
|
assert result == files
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_files_with_none_segment(llm_node):
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
|
||||||
|
|
||||||
|
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||||
|
assert result == []
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_files_with_array_any_segment(llm_node):
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
|
||||||
|
|
||||||
|
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||||
|
assert result == []
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_files_with_non_existent_variable(llm_node):
|
||||||
|
result = llm_node._fetch_files(selector=["sys", "files"])
|
||||||
|
assert result == []
|
||||||
|
|
||||||
|
|
||||||
|
def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
|
||||||
|
prompt_template = []
|
||||||
|
llm_node.node_data.prompt_template = prompt_template
|
||||||
|
|
||||||
|
fake_vision_detail = faker.random_element(
|
||||||
|
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
|
||||||
|
)
|
||||||
|
fake_remote_url = faker.url()
|
||||||
|
files = [
|
||||||
|
File(
|
||||||
|
id="1",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="test1.jpg",
|
||||||
|
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||||
|
remote_url=fake_remote_url,
|
||||||
|
related_id="1",
|
||||||
)
|
)
|
||||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
|
]
|
||||||
|
|
||||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
fake_query = faker.sentence()
|
||||||
assert result == [file]
|
|
||||||
|
|
||||||
def test_fetch_files_with_array_file_segment(self, llm_node):
|
prompt_messages, _ = llm_node._fetch_prompt_messages(
|
||||||
files = [
|
user_query=fake_query,
|
||||||
File(
|
user_files=files,
|
||||||
id="1",
|
context=None,
|
||||||
tenant_id="test",
|
memory=None,
|
||||||
type=FileType.IMAGE,
|
model_config=model_config,
|
||||||
filename="test1.jpg",
|
prompt_template=prompt_template,
|
||||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
memory_config=None,
|
||||||
related_id="1",
|
vision_enabled=False,
|
||||||
),
|
vision_detail=fake_vision_detail,
|
||||||
File(
|
)
|
||||||
id="2",
|
|
||||||
tenant_id="test",
|
|
||||||
type=FileType.IMAGE,
|
|
||||||
filename="test2.jpg",
|
|
||||||
transfer_method=FileTransferMethod.LOCAL_FILE,
|
|
||||||
related_id="2",
|
|
||||||
),
|
|
||||||
]
|
|
||||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
|
|
||||||
|
|
||||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
assert prompt_messages == [UserPromptMessage(content=fake_query)]
|
||||||
assert result == files
|
|
||||||
|
|
||||||
def test_fetch_files_with_none_segment(self, llm_node):
|
|
||||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
|
|
||||||
|
|
||||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
|
||||||
assert result == []
|
# Setup dify config
|
||||||
|
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
|
||||||
|
|
||||||
def test_fetch_files_with_array_any_segment(self, llm_node):
|
# Generate fake values for prompt template
|
||||||
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
|
fake_user_prompt = faker.sentence()
|
||||||
|
fake_assistant_prompt = faker.sentence()
|
||||||
|
fake_query = faker.sentence()
|
||||||
|
random_context = faker.sentence()
|
||||||
|
|
||||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
# Generate fake values for vision
|
||||||
assert result == []
|
fake_vision_detail = faker.random_element(
|
||||||
|
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
|
||||||
|
)
|
||||||
|
fake_remote_url = faker.url()
|
||||||
|
fake_prompt_image_url = faker.url()
|
||||||
|
|
||||||
def test_fetch_files_with_non_existent_variable(self, llm_node):
|
# Setup prompt template with image variable reference
|
||||||
result = llm_node._fetch_files(selector=["sys", "files"])
|
prompt_template = [
|
||||||
assert result == []
|
LLMNodeChatModelMessage(
|
||||||
|
text="{#context#}",
|
||||||
|
role=PromptMessageRole.SYSTEM,
|
||||||
|
edition_type="basic",
|
||||||
|
),
|
||||||
|
LLMNodeChatModelMessage(
|
||||||
|
text="{{#input.image#}}",
|
||||||
|
role=PromptMessageRole.USER,
|
||||||
|
edition_type="basic",
|
||||||
|
),
|
||||||
|
LLMNodeChatModelMessage(
|
||||||
|
text=fake_assistant_prompt,
|
||||||
|
role=PromptMessageRole.ASSISTANT,
|
||||||
|
edition_type="basic",
|
||||||
|
),
|
||||||
|
LLMNodeChatModelMessage(
|
||||||
|
text="{{#input.images#}}",
|
||||||
|
role=PromptMessageRole.USER,
|
||||||
|
edition_type="basic",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
llm_node.node_data.prompt_template = prompt_template
|
||||||
|
|
||||||
|
# Setup vision files
|
||||||
|
files = [
|
||||||
|
File(
|
||||||
|
id="1",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="test1.jpg",
|
||||||
|
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||||
|
remote_url=fake_remote_url,
|
||||||
|
related_id="1",
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Setup prompt image in variable pool
|
||||||
|
prompt_image = File(
|
||||||
|
id="2",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="prompt_image.jpg",
|
||||||
|
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||||
|
remote_url=fake_prompt_image_url,
|
||||||
|
related_id="2",
|
||||||
|
)
|
||||||
|
prompt_images = [
|
||||||
|
File(
|
||||||
|
id="3",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="prompt_image.jpg",
|
||||||
|
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||||
|
remote_url=fake_prompt_image_url,
|
||||||
|
related_id="3",
|
||||||
|
),
|
||||||
|
File(
|
||||||
|
id="4",
|
||||||
|
tenant_id="test",
|
||||||
|
type=FileType.IMAGE,
|
||||||
|
filename="prompt_image.jpg",
|
||||||
|
transfer_method=FileTransferMethod.REMOTE_URL,
|
||||||
|
remote_url=fake_prompt_image_url,
|
||||||
|
related_id="4",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["input", "image"], prompt_image)
|
||||||
|
llm_node.graph_runtime_state.variable_pool.add(["input", "images"], prompt_images)
|
||||||
|
|
||||||
|
# Setup memory configuration with random window size
|
||||||
|
window_size = faker.random_int(min=1, max=3)
|
||||||
|
memory_config = MemoryConfig(
|
||||||
|
role_prefix=MemoryConfig.RolePrefix(user="Human", assistant="Assistant"),
|
||||||
|
window=MemoryConfig.WindowConfig(enabled=True, size=window_size),
|
||||||
|
query_prompt_template=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Setup mock memory with history messages
|
||||||
|
mock_history = [
|
||||||
|
UserPromptMessage(content=faker.sentence()),
|
||||||
|
AssistantPromptMessage(content=faker.sentence()),
|
||||||
|
UserPromptMessage(content=faker.sentence()),
|
||||||
|
AssistantPromptMessage(content=faker.sentence()),
|
||||||
|
UserPromptMessage(content=faker.sentence()),
|
||||||
|
AssistantPromptMessage(content=faker.sentence()),
|
||||||
|
]
|
||||||
|
memory = MockTokenBufferMemory(history_messages=mock_history)
|
||||||
|
|
||||||
|
# Call the method under test
|
||||||
|
prompt_messages, _ = llm_node._fetch_prompt_messages(
|
||||||
|
user_query=fake_query,
|
||||||
|
user_files=files,
|
||||||
|
context=random_context,
|
||||||
|
memory=memory,
|
||||||
|
model_config=model_config,
|
||||||
|
prompt_template=prompt_template,
|
||||||
|
memory_config=memory_config,
|
||||||
|
vision_enabled=True,
|
||||||
|
vision_detail=fake_vision_detail,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Build expected messages
|
||||||
|
expected_messages = [
|
||||||
|
# Base template messages
|
||||||
|
SystemPromptMessage(content=random_context),
|
||||||
|
# Image from variable pool in prompt template
|
||||||
|
UserPromptMessage(
|
||||||
|
content=[
|
||||||
|
ImagePromptMessageContent(data=fake_prompt_image_url, detail=fake_vision_detail),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
AssistantPromptMessage(content=fake_assistant_prompt),
|
||||||
|
UserPromptMessage(
|
||||||
|
content=[
|
||||||
|
ImagePromptMessageContent(data=fake_prompt_image_url, detail=fake_vision_detail),
|
||||||
|
ImagePromptMessageContent(data=fake_prompt_image_url, detail=fake_vision_detail),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add memory messages based on window size
|
||||||
|
expected_messages.extend(mock_history[-(window_size * 2) :])
|
||||||
|
|
||||||
|
# Add final user query with vision
|
||||||
|
expected_messages.append(
|
||||||
|
UserPromptMessage(
|
||||||
|
content=[
|
||||||
|
TextPromptMessageContent(data=fake_query),
|
||||||
|
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Verify the result
|
||||||
|
assert prompt_messages == expected_messages
|
||||||
|
|
Loading…
Reference in New Issue
Block a user