Merge main into feat/plugin

This commit is contained in:
Yeuoly 2024-09-26 12:59:06 +08:00
commit dc255cc154
No known key found for this signature in database
GPG Key ID: A66E7E320FB19F61
69 changed files with 946 additions and 295 deletions

46
.github/workflows/web-tests.yml vendored Normal file
View File

@ -0,0 +1,46 @@
name: Web Tests
on:
pull_request:
branches:
- main
paths:
- web/**
concurrency:
group: web-tests-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
test:
name: Web Tests
runs-on: ubuntu-latest
defaults:
run:
working-directory: ./web
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Check changed files
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: web/**
- name: Setup Node.js
uses: actions/setup-node@v4
if: steps.changed-files.outputs.any_changed == 'true'
with:
node-version: 20
cache: yarn
cache-dependency-path: ./web/package.json
- name: Install dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn install --frozen-lockfile
- name: Run tests
if: steps.changed-files.outputs.any_changed == 'true'
run: yarn test

View File

@ -53,11 +53,9 @@ from services.account_service import AccountService
warnings.simplefilter("ignore", ResourceWarning)
# fix windows platform
if os.name == "nt":
os.system('tzutil /s "UTC"')
else:
os.environ["TZ"] = "UTC"
os.environ["TZ"] = "UTC"
# windows platform not support tzset
if hasattr(time, "tzset"):
time.tzset()

View File

@ -309,7 +309,7 @@ class AppRunner:
if not prompt_messages:
prompt_messages = result.prompt_messages
if not usage and result.delta.usage:
if result.delta.usage:
usage = result.delta.usage
if not usage:

View File

@ -5,6 +5,7 @@ from typing import Optional, cast
import numpy as np
from sqlalchemy.exc import IntegrityError
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
@ -56,7 +57,9 @@ class CacheEmbedding(Embeddings):
for i in range(0, len(embedding_queue_texts), max_chunks):
batch_texts = embedding_queue_texts[i : i + max_chunks]
embedding_result = self._model_instance.invoke_text_embedding(texts=batch_texts, user=self._user)
embedding_result = self._model_instance.invoke_text_embedding(
texts=batch_texts, user=self._user, input_type=EmbeddingInputType.DOCUMENT
)
for vector in embedding_result.embeddings:
try:
@ -100,7 +103,9 @@ class CacheEmbedding(Embeddings):
redis_client.expire(embedding_cache_key, 600)
return list(np.frombuffer(base64.b64decode(embedding), dtype="float"))
try:
embedding_result = self._model_instance.invoke_text_embedding(texts=[text], user=self._user)
embedding_result = self._model_instance.invoke_text_embedding(
texts=[text], user=self._user, input_type=EmbeddingInputType.QUERY
)
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()

View File

@ -0,0 +1,10 @@
from enum import Enum
class EmbeddingInputType(Enum):
"""
Enum for embedding input type.
"""
DOCUMENT = "document"
QUERY = "query"

View File

@ -3,6 +3,7 @@ import os
from collections.abc import Callable, Generator, Sequence
from typing import IO, Literal, Optional, Union, cast, overload
from core.embedding.embedding_constant import EmbeddingInputType
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import ModelLoadBalancingConfiguration
from core.errors.error import ProviderTokenNotInitError
@ -194,12 +195,15 @@ class ModelInstance:
tools=tools,
)
def invoke_text_embedding(self, texts: list[str], user: Optional[str] = None) -> TextEmbeddingResult:
def invoke_text_embedding(
self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
) -> TextEmbeddingResult:
"""
Invoke large language model
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
if not isinstance(self.model_type_instance, TextEmbeddingModel):
@ -212,6 +216,7 @@ class ModelInstance:
credentials=self.credentials,
texts=texts,
user=user,
input_type=input_type,
)
def get_text_embedding_num_tokens(self, texts: list[str]) -> int:

View File

@ -4,6 +4,7 @@ from typing import Optional
from pydantic import ConfigDict
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.__base.ai_model import AIModel
@ -20,35 +21,47 @@ class TextEmbeddingModel(AIModel):
model_config = ConfigDict(protected_namespaces=())
def invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke large language model
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
self.started_at = time.perf_counter()
try:
return self._invoke(model, credentials, texts, user)
return self._invoke(model, credentials, texts, user, input_type)
except Exception as e:
raise self._transform_invoke_error(e)
@abstractmethod
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke large language model
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
raise NotImplementedError

View File

@ -7,6 +7,7 @@ import numpy as np
import tiktoken
from openai import AzureOpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import AIModelEntity, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -17,8 +18,23 @@ from core.model_runtime.model_providers.azure_openai._constant import EMBEDDING_
class AzureOpenAITextEmbeddingModel(_CommonAzureOpenAI, TextEmbeddingModel):
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
base_model_name = credentials["base_model_name"]
credentials_kwargs = self._to_credential_kwargs(credentials)
client = AzureOpenAI(**credentials_kwargs)

View File

@ -4,6 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -35,7 +36,12 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
api_base: str = "http://api.baichuan-ai.com/v1/embeddings"
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -44,6 +50,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["api_key"]

View File

@ -13,6 +13,7 @@ from botocore.exceptions import (
UnknownServiceError,
)
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -30,7 +31,12 @@ logger = logging.getLogger(__name__)
class BedrockTextEmbeddingModel(TextEmbeddingModel):
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -39,6 +45,7 @@ class BedrockTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
client_config = Config(region_name=credentials["aws_region"])

View File

@ -5,6 +5,7 @@ import cohere
import numpy as np
from cohere.core import RequestOptions
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -25,7 +26,12 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -34,6 +40,7 @@ class CohereTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
# get model properties

View File

@ -15,6 +15,7 @@ help:
en_US: https://fireworks.ai/account/api-keys
supported_model_types:
- llm
- text-embedding
configurate_methods:
- predefined-model
provider_credential_schema:

View File

@ -0,0 +1,12 @@
model: WhereIsAI/UAE-Large-V1
label:
zh_Hans: UAE-Large-V1
en_US: UAE-Large-V1
model_type: text-embedding
model_properties:
context_size: 512
max_chunks: 1
pricing:
input: '0.008'
unit: '0.000001'
currency: 'USD'

View File

@ -0,0 +1,12 @@
model: thenlper/gte-base
label:
zh_Hans: GTE-base
en_US: GTE-base
model_type: text-embedding
model_properties:
context_size: 512
max_chunks: 1
pricing:
input: '0.008'
unit: '0.000001'
currency: 'USD'

View File

@ -0,0 +1,12 @@
model: thenlper/gte-large
label:
zh_Hans: GTE-large
en_US: GTE-large
model_type: text-embedding
model_properties:
context_size: 512
max_chunks: 1
pricing:
input: '0.008'
unit: '0.000001'
currency: 'USD'

View File

@ -0,0 +1,12 @@
model: nomic-ai/nomic-embed-text-v1.5
label:
zh_Hans: nomic-embed-text-v1.5
en_US: nomic-embed-text-v1.5
model_type: text-embedding
model_properties:
context_size: 8192
max_chunks: 16
pricing:
input: '0.008'
unit: '0.000001'
currency: 'USD'

View File

@ -0,0 +1,12 @@
model: nomic-ai/nomic-embed-text-v1
label:
zh_Hans: nomic-embed-text-v1
en_US: nomic-embed-text-v1
model_type: text-embedding
model_properties:
context_size: 8192
max_chunks: 16
pricing:
input: '0.008'
unit: '0.000001'
currency: 'USD'

View File

@ -0,0 +1,151 @@
import time
from collections.abc import Mapping
from typing import Optional, Union
import numpy as np
from openai import OpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.fireworks._common import _CommonFireworks
class FireworksTextEmbeddingModel(_CommonFireworks, TextEmbeddingModel):
"""
Model class for Fireworks text embedding model.
"""
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
credentials_kwargs = self._to_credential_kwargs(credentials)
client = OpenAI(**credentials_kwargs)
extra_model_kwargs = {}
if user:
extra_model_kwargs["user"] = user
extra_model_kwargs["encoding_format"] = "float"
context_size = self._get_context_size(model, credentials)
max_chunks = self._get_max_chunks(model, credentials)
inputs = []
indices = []
used_tokens = 0
for i, text in enumerate(texts):
# Here token count is only an approximation based on the GPT2 tokenizer
# TODO: Optimize for better token estimation and chunking
num_tokens = self._get_num_tokens_by_gpt2(text)
if num_tokens >= context_size:
cutoff = int(np.floor(len(text) * (context_size / num_tokens)))
# if num tokens is larger than context length, only use the start
inputs.append(text[0:cutoff])
else:
inputs.append(text)
indices += [i]
batched_embeddings = []
_iter = range(0, len(inputs), max_chunks)
for i in _iter:
embeddings_batch, embedding_used_tokens = self._embedding_invoke(
model=model,
client=client,
texts=inputs[i : i + max_chunks],
extra_model_kwargs=extra_model_kwargs,
)
used_tokens += embedding_used_tokens
batched_embeddings += embeddings_batch
usage = self._calc_response_usage(model=model, credentials=credentials, tokens=used_tokens)
return TextEmbeddingResult(embeddings=batched_embeddings, usage=usage, model=model)
def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:return:
"""
return sum(self._get_num_tokens_by_gpt2(text) for text in texts)
def validate_credentials(self, model: str, credentials: Mapping) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
try:
# transform credentials to kwargs for model instance
credentials_kwargs = self._to_credential_kwargs(credentials)
client = OpenAI(**credentials_kwargs)
# call embedding model
self._embedding_invoke(model=model, client=client, texts=["ping"], extra_model_kwargs={})
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _embedding_invoke(
self, model: str, client: OpenAI, texts: Union[list[str], str], extra_model_kwargs: dict
) -> tuple[list[list[float]], int]:
"""
Invoke embedding model
:param model: model name
:param client: model client
:param texts: texts to embed
:param extra_model_kwargs: extra model kwargs
:return: embeddings and used tokens
"""
response = client.embeddings.create(model=model, input=texts, **extra_model_kwargs)
return [data.embedding for data in response.data], response.usage.total_tokens
def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
"""
Calculate response usage
:param model: model name
:param credentials: model credentials
:param tokens: input tokens
:return: usage
"""
input_price_info = self.get_price(
model=model, credentials=credentials, tokens=tokens, price_type=PriceType.INPUT
)
usage = EmbeddingUsage(
tokens=tokens,
total_tokens=tokens,
unit_price=input_price_info.unit_price,
price_unit=input_price_info.unit,
total_price=input_price_info.total_amount,
currency=input_price_info.currency,
latency=time.perf_counter() - self.started_at,
)
return usage

View File

@ -6,6 +6,7 @@ import numpy as np
import requests
from huggingface_hub import HfApi, InferenceClient
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -18,8 +19,23 @@ HUGGINGFACE_ENDPOINT_API = "https://api.endpoints.huggingface.cloud/v2/endpoint/
class HuggingfaceHubTextEmbeddingModel(_CommonHuggingfaceHub, TextEmbeddingModel):
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
client = InferenceClient(token=credentials["huggingfacehub_api_token"])
execute_model = model

View File

@ -1,6 +1,7 @@
import time
from typing import Optional
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -23,7 +24,12 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -38,6 +44,7 @@ class HuggingfaceTeiTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
server_url = credentials["server_url"]

View File

@ -9,6 +9,7 @@ from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.common.profile.http_profile import HttpProfile
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -26,7 +27,12 @@ class HunyuanTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -35,6 +41,7 @@ class HunyuanTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -67,46 +67,3 @@ model_credential_schema:
required: false
type: text-input
default: '8192'
- variable: task
label:
zh_Hans: 下游任务
en_US: Downstream task
placeholder:
zh_Hans: 选择将使用向量模型的下游任务。模型将返回针对该任务优化的向量。
en_US: Select the downstream task for which the embeddings will be used. The model will return the optimized embeddings for that task.
required: false
type: select
options:
- value: retrieval.query
label:
en_US: retrieval.query
- value: retrieval.passage
label:
en_US: retrieval.passage
- value: separation
label:
en_US: separation
- value: classification
label:
en_US: classification
- value: text-matching
label:
en_US: text-matching
- variable: dimensions
label:
zh_Hans: 输出维度
en_US: Output dimensions
placeholder:
zh_Hans: 输入您的输出维度
en_US: Enter output dimensions
required: false
type: text-input
- variable: late_chunking
label:
zh_Hans: 后期分块
en_US: Late chunking
placeholder:
zh_Hans: 应用后期分块技术来利用模型的长上下文功能来生成上下文块向量化。
en_US: Apply the late chunking technique to leverage the model's long-context capabilities for generating contextual chunk embeddings.
required: false
type: switch

View File

@ -4,6 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -27,7 +28,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
api_base: str = "https://api.jina.ai/v1"
def _to_payload(self, model: str, texts: list[str], credentials: dict) -> dict:
def _to_payload(self, model: str, texts: list[str], credentials: dict, input_type: EmbeddingInputType) -> dict:
"""
Parse model credentials
@ -44,23 +45,20 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
data = {"model": model, "input": [transform_jina_input_text(model, text) for text in texts]}
task = credentials.get("task")
dimensions = credentials.get("dimensions")
late_chunking = credentials.get("late_chunking")
if task is not None:
data["task"] = task
if dimensions is not None:
data["dimensions"] = int(dimensions)
if late_chunking is not None:
data["late_chunking"] = late_chunking
# model specific parameters
if model == "jina-embeddings-v3":
# set `task` type according to input type for the best performance
data["task"] = "retrieval.query" if input_type == EmbeddingInputType.QUERY else "retrieval.passage"
return data
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -69,6 +67,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["api_key"]
@ -81,7 +80,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
url = base_url + "/embeddings"
headers = {"Authorization": "Bearer " + api_key, "Content-Type": "application/json"}
data = self._to_payload(model=model, texts=texts, credentials=credentials)
data = self._to_payload(model=model, texts=texts, credentials=credentials, input_type=input_type)
try:
response = post(url, headers=headers, data=dumps(data))

View File

@ -5,6 +5,7 @@ from typing import Optional
from requests import post
from yarl import URL
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -22,11 +23,16 @@ from core.model_runtime.model_providers.__base.text_embedding_model import TextE
class LocalAITextEmbeddingModel(TextEmbeddingModel):
"""
Model class for Jina text embedding model.
Model class for LocalAI text embedding model.
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -35,6 +41,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
if len(texts) != 1:

View File

@ -4,6 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -34,7 +35,12 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
api_base: str = "https://api.minimax.chat/v1/embeddings"
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -43,6 +49,7 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["minimax_api_key"]

View File

@ -4,6 +4,7 @@ from typing import Optional
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -27,7 +28,12 @@ class MixedBreadTextEmbeddingModel(TextEmbeddingModel):
api_base: str = "https://api.mixedbread.ai/v1"
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -36,6 +42,7 @@ class MixedBreadTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["api_key"]

View File

@ -5,6 +5,7 @@ from typing import Optional
from nomic import embed
from nomic import login as nomic_login
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import (
EmbeddingUsage,
@ -46,6 +47,7 @@ class NomicTextEmbeddingModel(_CommonNomic, TextEmbeddingModel):
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -54,6 +56,7 @@ class NomicTextEmbeddingModel(_CommonNomic, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
embeddings, prompt_tokens, total_tokens = self.embed_text(

View File

@ -4,6 +4,7 @@ from typing import Optional
from requests import post
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -27,7 +28,12 @@ class NvidiaTextEmbeddingModel(TextEmbeddingModel):
models: list[str] = ["NV-Embed-QA"]
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -36,6 +42,7 @@ class NvidiaTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
api_key = credentials["api_key"]

View File

@ -6,6 +6,7 @@ from typing import Optional
import numpy as np
import oci
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -41,7 +42,12 @@ class OCITextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -50,6 +56,7 @@ class OCITextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
# get model properties

View File

@ -8,6 +8,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
@ -38,7 +39,12 @@ class OllamaEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -47,6 +53,7 @@ class OllamaEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -6,6 +6,7 @@ import numpy as np
import tiktoken
from openai import OpenAI
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -19,7 +20,12 @@ class OpenAITextEmbeddingModel(_CommonOpenAI, TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -28,6 +34,7 @@ class OpenAITextEmbeddingModel(_CommonOpenAI, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
# transform credentials to kwargs for model instance

View File

@ -7,6 +7,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
@ -28,7 +29,12 @@ class OAICompatEmbeddingModel(_CommonOaiApiCompat, TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -37,6 +43,7 @@ class OAICompatEmbeddingModel(_CommonOaiApiCompat, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -5,6 +5,7 @@ from typing import Optional
from requests import post
from requests.exceptions import ConnectionError, InvalidSchema, MissingSchema
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import (
@ -25,7 +26,12 @@ class OpenLLMTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -34,6 +40,7 @@ class OpenLLMTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
server_url = credentials["server_url"]

View File

@ -7,6 +7,7 @@ from urllib.parse import urljoin
import numpy as np
import requests
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
@ -28,7 +29,12 @@ class OAICompatEmbeddingModel(_CommonOaiApiCompat, TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -37,6 +43,7 @@ class OAICompatEmbeddingModel(_CommonOaiApiCompat, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -4,6 +4,7 @@ from typing import Optional
from replicate import Client as ReplicateClient
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -14,8 +15,23 @@ from core.model_runtime.model_providers.replicate._common import _CommonReplicat
class ReplicateEmbeddingModel(_CommonReplicate, TextEmbeddingModel):
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
client = ReplicateClient(api_token=credentials["replicate_api_token"], timeout=30)
if "model_version" in credentials:

View File

@ -84,8 +84,9 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
Model class for Cohere large language model.
"""
sagemaker_client: Any = None
sagemaker_session: Any = None
predictor: Any = None
sagemaker_endpoint: str = None
def _handle_chat_generate_response(
self,
@ -211,7 +212,7 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
:param user: unique user id
:return: full response or stream response chunk generator result
"""
if not self.sagemaker_client:
if not self.sagemaker_session:
access_key = credentials.get("aws_access_key_id")
secret_key = credentials.get("aws_secret_access_key")
aws_region = credentials.get("aws_region")
@ -226,11 +227,14 @@ class SageMakerLargeLanguageModel(LargeLanguageModel):
else:
boto_session = boto3.Session()
self.sagemaker_client = boto_session.client("sagemaker")
sagemaker_session = Session(boto_session=boto_session, sagemaker_client=self.sagemaker_client)
sagemaker_client = boto_session.client("sagemaker")
self.sagemaker_session = Session(boto_session=boto_session, sagemaker_client=sagemaker_client)
if self.sagemaker_endpoint != credentials.get("sagemaker_endpoint"):
self.sagemaker_endpoint = credentials.get("sagemaker_endpoint")
self.predictor = Predictor(
endpoint_name=credentials.get("sagemaker_endpoint"),
sagemaker_session=sagemaker_session,
endpoint_name=self.sagemaker_endpoint,
sagemaker_session=self.sagemaker_session,
serializer=serializers.JSONSerializer(),
)

View File

@ -6,6 +6,7 @@ from typing import Any, Optional
import boto3
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -53,7 +54,12 @@ class SageMakerEmbeddingModel(TextEmbeddingModel):
return embeddings
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -62,6 +68,7 @@ class SageMakerEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
# get model properties

View File

@ -1,25 +1,38 @@
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-72B-Instruct
- Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-Coder-7B-Instruct
- deepseek-ai/DeepSeek-V2.5
- Qwen/Qwen2-72B-Instruct
- Qwen/Qwen2-57B-A14B-Instruct
- Qwen/Qwen2-7B-Instruct
- Qwen/Qwen2-1.5B-Instruct
- 01-ai/Yi-1.5-34B-Chat
- 01-ai/Yi-1.5-9B-Chat-16K
- 01-ai/Yi-1.5-6B-Chat
- THUDM/glm-4-9b-chat
- deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V2-Chat
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- THUDM/glm-4-9b-chat
- THUDM/chatglm3-6b
- 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K
- 01-ai/Yi-1.5-6B-Chat
- internlm/internlm2_5-20b-chat
- internlm/internlm2_5-7b-chat
- google/gemma-2-27b-it
- google/gemma-2-9b-it
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-8B-Instruct
- meta-llama/Meta-Llama-3.1-405B-Instruct
- meta-llama/Meta-Llama-3.1-70B-Instruct
- meta-llama/Meta-Llama-3.1-8B-Instruct
- mistralai/Mixtral-8x7B-Instruct-v0.1
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-8B-Instruct
- google/gemma-2-27b-it
- google/gemma-2-9b-it
- mistralai/Mistral-7B-Instruct-v0.2
- Pro/Qwen/Qwen2-7B-Instruct
- Pro/Qwen/Qwen2-1.5B-Instruct
- Pro/THUDM/glm-4-9b-chat
- Pro/THUDM/chatglm3-6b
- Pro/01-ai/Yi-1.5-9B-Chat-16K
- Pro/01-ai/Yi-1.5-6B-Chat
- Pro/internlm/internlm2_5-7b-chat
- Pro/meta-llama/Meta-Llama-3.1-8B-Instruct
- Pro/meta-llama/Meta-Llama-3-8B-Instruct
- Pro/google/gemma-2-9b-it

View File

@ -1,5 +1,6 @@
from typing import Optional
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.openai_api_compatible.text_embedding.text_embedding import (
OAICompatEmbeddingModel,
@ -16,8 +17,23 @@ class SiliconflowTextEmbeddingModel(OAICompatEmbeddingModel):
super().validate_credentials(model, credentials)
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
self._add_custom_parameters(credentials)
return super()._invoke(model, credentials, texts, user)

View File

@ -213,18 +213,21 @@ class SparkLargeLanguageModel(LargeLanguageModel):
:param prompt_messages: prompt messages
:return: llm response chunk generator result
"""
completion = ""
for index, content in enumerate(client.subscribe()):
if isinstance(content, dict):
delta = content["data"]
else:
delta = content
completion += delta
assistant_prompt_message = AssistantPromptMessage(
content=delta or "",
)
temp_assistant_prompt_message = AssistantPromptMessage(
content=completion,
)
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
completion_tokens = self.get_num_tokens(model, credentials, [temp_assistant_prompt_message])
# transform usage
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)

View File

@ -4,6 +4,7 @@ from typing import Optional
import dashscope
import numpy as np
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import (
EmbeddingUsage,
@ -27,6 +28,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -35,6 +37,7 @@ class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
credentials_kwargs = self._to_credential_kwargs(credentials)

View File

@ -7,6 +7,7 @@ import numpy as np
from openai import OpenAI
from tokenizers import Tokenizer
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -22,7 +23,14 @@ class UpstageTextEmbeddingModel(_CommonUpstage, TextEmbeddingModel):
def _get_tokenizer(self) -> Tokenizer:
return Tokenizer.from_pretrained("upstage/solar-1-mini-tokenizer")
def _invoke(self, model: str, credentials: dict, texts: list[str], user: str | None = None) -> TextEmbeddingResult:
def _invoke(
self,
model: str,
credentials: dict,
texts: list[str],
user: str | None = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -30,6 +38,7 @@ class UpstageTextEmbeddingModel(_CommonUpstage, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -1,6 +1,6 @@
model: gemini-1.5-flash-001
label:
en_US: Gemini 1.5 Flash
en_US: Gemini 1.5 Flash 001
model_type: llm
features:
- agent-thought

View File

@ -0,0 +1,37 @@
model: gemini-1.5-flash-002
label:
en_US: Gemini 1.5 Flash 002
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -1,6 +1,6 @@
model: gemini-1.5-pro-001
label:
en_US: Gemini 1.5 Pro
en_US: Gemini 1.5 Pro 001
model_type: llm
features:
- agent-thought

View File

@ -0,0 +1,37 @@
model: gemini-1.5-pro-002
label:
en_US: Gemini 1.5 Pro 002
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,37 @@
model: gemini-flash-experimental
label:
en_US: Gemini Flash Experimental
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -0,0 +1,37 @@
model: gemini-pro-experimental
label:
en_US: Gemini Pro Experimental
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 1048576
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
en_US: Top k
type: int
help:
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
- name: max_output_tokens
use_template: max_tokens
required: true
default: 8192
min: 1
max: 8192
pricing:
input: '0.00'
output: '0.00'
unit: '0.000001'
currency: USD

View File

@ -2,6 +2,7 @@ import base64
import io
import json
import logging
import time
from collections.abc import Generator
from typing import Optional, Union, cast
@ -20,7 +21,6 @@ from google.api_core import exceptions
from google.cloud import aiplatform
from google.oauth2 import service_account
from PIL import Image
from vertexai.generative_models import HarmBlockThreshold, HarmCategory
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
@ -34,6 +34,7 @@ from core.model_runtime.entities.message_entities import (
ToolPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
@ -503,20 +504,12 @@ class VertexAiLargeLanguageModel(LargeLanguageModel):
else:
history.append(content)
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
google_model = glm.GenerativeModel(model_name=model, system_instruction=system_instruction)
response = google_model.generate_content(
contents=history,
generation_config=glm.GenerationConfig(**config_kwargs),
stream=stream,
safety_settings=safety_settings,
tools=self._convert_tools_to_glm_tool(tools) if tools else None,
)

View File

@ -9,6 +9,7 @@ from google.cloud import aiplatform
from google.oauth2 import service_account
from vertexai.language_models import TextEmbeddingModel as VertexTextEmbeddingModel
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
@ -30,7 +31,12 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -38,6 +44,8 @@ class VertexAiTextEmbeddingModel(_CommonVertexAi, TextEmbeddingModel):
:param model: model name
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
service_account_info = json.loads(base64.b64decode(credentials["vertex_service_account_key"]))

View File

@ -2,6 +2,7 @@ import time
from decimal import Decimal
from typing import Optional
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import (
AIModelEntity,
@ -41,7 +42,12 @@ class VolcengineMaaSTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -50,6 +56,7 @@ class VolcengineMaaSTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
if ArkClientV3.is_legacy(credentials):

View File

@ -7,6 +7,7 @@ from typing import Any, Optional
import numpy as np
from requests import Response, post
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.invoke import InvokeError
@ -70,7 +71,12 @@ class WenxinTextEmbeddingModel(TextEmbeddingModel):
return WenxinTextEmbedding(api_key, secret_key)
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -79,6 +85,7 @@ class WenxinTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""

View File

@ -3,6 +3,7 @@ from typing import Optional
from xinference_client.client.restful.restful_client import Client, RESTfulEmbeddingModelHandle
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelPropertyKey, ModelType, PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
@ -25,7 +26,12 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -40,6 +46,7 @@ class XinferenceTextEmbeddingModel(TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
server_url = credentials["server_url"]

View File

@ -1,6 +1,7 @@
import time
from typing import Optional
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_runtime.entities.model_entities import PriceType
from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
@ -15,7 +16,12 @@ class ZhipuAITextEmbeddingModel(_CommonZhipuaiAI, TextEmbeddingModel):
"""
def _invoke(
self, model: str, credentials: dict, texts: list[str], user: Optional[str] = None
self,
model: str,
credentials: dict,
texts: list[str],
user: Optional[str] = None,
input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT,
) -> TextEmbeddingResult:
"""
Invoke text embedding model
@ -24,6 +30,7 @@ class ZhipuAITextEmbeddingModel(_CommonZhipuaiAI, TextEmbeddingModel):
:param credentials: model credentials
:param texts: texts to embed
:param user: unique user id
:param input_type: input type
:return: embeddings result
"""
credentials_kwargs = self._to_credential_kwargs(credentials)

View File

@ -124,7 +124,7 @@ class ExtractProcessor:
extractor = UnstructuredPPTXExtractor(file_path, unstructured_api_url)
elif file_extension == ".xml":
extractor = UnstructuredXmlExtractor(file_path, unstructured_api_url)
elif file_extension == "epub":
elif file_extension == ".epub":
extractor = UnstructuredEpubExtractor(file_path, unstructured_api_url)
else:
# txt
@ -146,7 +146,7 @@ class ExtractProcessor:
extractor = WordExtractor(file_path, upload_file.tenant_id, upload_file.created_by)
elif file_extension == ".csv":
extractor = CSVExtractor(file_path, autodetect_encoding=True)
elif file_extension == "epub":
elif file_extension == ".epub":
extractor = UnstructuredEpubExtractor(file_path)
else:
# txt

View File

@ -64,6 +64,9 @@ class ToolProviderController(ABC):
# check type
credential_schema = credentials_need_to_validate[credential_name]
if not credential_schema.required and credentials[credential_name] is None:
continue
if credential_schema.type in {ProviderConfig.Type.SECRET_INPUT, ProviderConfig.Type.TEXT_INPUT}:
if not isinstance(credentials[credential_name], str):
raise ToolProviderCredentialValidationError(f"credential {credential_name} should be string")

13
api/poetry.lock generated
View File

@ -2333,13 +2333,13 @@ develop = ["aiohttp", "furo", "httpx", "opentelemetry-api", "opentelemetry-sdk",
[[package]]
name = "elasticsearch"
version = "8.14.0"
version = "8.15.1"
description = "Python client for Elasticsearch"
optional = false
python-versions = ">=3.7"
python-versions = ">=3.8"
files = [
{file = "elasticsearch-8.14.0-py3-none-any.whl", hash = "sha256:cef8ef70a81af027f3da74a4f7d9296b390c636903088439087b8262a468c130"},
{file = "elasticsearch-8.14.0.tar.gz", hash = "sha256:aa2490029dd96f4015b333c1827aa21fd6c0a4d223b00dfb0fe933b8d09a511b"},
{file = "elasticsearch-8.15.1-py3-none-any.whl", hash = "sha256:02a0476e98768a30d7926335fc0d305c04fdb928eea1354c6e6040d8c2814569"},
{file = "elasticsearch-8.15.1.tar.gz", hash = "sha256:40c0d312f8adf8bdc81795bc16a0b546ddf544cb1f90e829a244e4780c4dbfd8"},
]
[package.dependencies]
@ -2347,7 +2347,10 @@ elastic-transport = ">=8.13,<9"
[package.extras]
async = ["aiohttp (>=3,<4)"]
dev = ["aiohttp", "black", "build", "coverage", "isort", "jinja2", "mapbox-vector-tile", "nox", "numpy", "orjson", "pandas", "pyarrow", "pytest", "pytest-asyncio", "pytest-cov", "python-dateutil", "pyyaml (>=5.4)", "requests (>=2,<3)", "simsimd", "twine", "unasync"]
docs = ["sphinx", "sphinx-autodoc-typehints", "sphinx-rtd-theme (>=2.0)"]
orjson = ["orjson (>=3)"]
pyarrow = ["pyarrow (>=1)"]
requests = ["requests (>=2.4.0,!=2.32.2,<3.0.0)"]
vectorstore-mmr = ["numpy (>=1)", "simsimd (>=3)"]
@ -10498,4 +10501,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "17c4108d92c415d987f8b437ea3e0484c5601a05bfe175339a8546c93c159bc5"
content-hash = "69b42bb1ff033f14e199fee8335356275099421d72bbd7037b7a991ea65cae08"

View File

@ -253,7 +253,7 @@ alibabacloud_gpdb20160503 = "~3.8.0"
alibabacloud_tea_openapi = "~0.3.9"
chromadb = "0.5.1"
clickhouse-connect = "~0.7.16"
elasticsearch = "8.14.0"
elasticsearch = "~8.15.1"
oracledb = "~2.2.1"
pgvecto-rs = { version = "~0.2.1", extras = ['sqlalchemy'] }
pgvector = "0.2.5"

View File

@ -0,0 +1,54 @@
import os
import pytest
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.fireworks.text_embedding.text_embedding import FireworksTextEmbeddingModel
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
@pytest.mark.parametrize("setup_openai_mock", [["text_embedding"]], indirect=True)
def test_validate_credentials(setup_openai_mock):
model = FireworksTextEmbeddingModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="nomic-ai/nomic-embed-text-v1.5", credentials={"fireworks_api_key": "invalid_key"}
)
model.validate_credentials(
model="nomic-ai/nomic-embed-text-v1.5", credentials={"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY")}
)
@pytest.mark.parametrize("setup_openai_mock", [["text_embedding"]], indirect=True)
def test_invoke_model(setup_openai_mock):
model = FireworksTextEmbeddingModel()
result = model.invoke(
model="nomic-ai/nomic-embed-text-v1.5",
credentials={
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY"),
},
texts=["hello", "world", " ".join(["long_text"] * 100), " ".join(["another_long_text"] * 100)],
user="foo",
)
assert isinstance(result, TextEmbeddingResult)
assert len(result.embeddings) == 4
assert result.usage.total_tokens == 2
def test_get_num_tokens():
model = FireworksTextEmbeddingModel()
num_tokens = model.get_num_tokens(
model="nomic-ai/nomic-embed-text-v1.5",
credentials={
"fireworks_api_key": os.environ.get("FIREWORKS_API_KEY"),
},
texts=["hello", "world"],
)
assert num_tokens == 2

View File

@ -568,6 +568,10 @@ WORKFLOW_MAX_EXECUTION_STEPS=500
WORKFLOW_MAX_EXECUTION_TIME=1200
WORKFLOW_CALL_MAX_DEPTH=5
# HTTP request node in workflow configuration
HTTP_REQUEST_NODE_MAX_BINARY_SIZE=10485760
HTTP_REQUEST_NODE_MAX_TEXT_SIZE=1048576
# SSRF Proxy server HTTP URL
SSRF_PROXY_HTTP_URL=http://ssrf_proxy:3128
# SSRF Proxy server HTTPS URL

View File

@ -207,6 +207,8 @@ x-shared-env: &shared-api-worker-env
WORKFLOW_CALL_MAX_DEPTH: ${WORKFLOW_MAX_EXECUTION_TIME:-5}
SSRF_PROXY_HTTP_URL: ${SSRF_PROXY_HTTP_URL:-http://ssrf_proxy:3128}
SSRF_PROXY_HTTPS_URL: ${SSRF_PROXY_HTTPS_URL:-http://ssrf_proxy:3128}
HTTP_REQUEST_NODE_MAX_BINARY_SIZE: ${HTTP_REQUEST_NODE_MAX_BINARY_SIZE:-10485760}
HTTP_REQUEST_NODE_MAX_TEXT_SIZE: ${HTTP_REQUEST_NODE_MAX_TEXT_SIZE:-1048576}
services:
# API service
@ -628,7 +630,7 @@ services:
# https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html
# https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#docker-prod-prerequisites
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.14.3
image: docker.elastic.co/elasticsearch/elasticsearch:8.15.1
container_name: elasticsearch
profiles:
- elasticsearch
@ -655,7 +657,7 @@ services:
# https://www.elastic.co/guide/en/kibana/current/docker.html
# https://www.elastic.co/guide/en/kibana/current/settings.html
kibana:
image: docker.elastic.co/kibana/kibana:8.14.3
image: docker.elastic.co/kibana/kibana:8.15.1
container_name: kibana
profiles:
- elasticsearch

View File

@ -1,103 +1,80 @@
import json
import requests
class DifyClient:
def __init__(self, api_key, base_url: str = 'https://api.dify.ai/v1'):
def __init__(self, api_key, base_url: str = "https://api.dify.ai/v1"):
self.api_key = api_key
self.base_url = base_url
def _send_request(self, method, endpoint, json=None, params=None, stream=False):
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
headers = {"Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json"}
url = f"{self.base_url}{endpoint}"
response = requests.request(method, url, json=json, params=params, headers=headers, stream=stream)
return response
def _send_request_with_files(self, method, endpoint, data, files):
headers = {
"Authorization": f"Bearer {self.api_key}"
}
headers = {"Authorization": f"Bearer {self.api_key}"}
url = f"{self.base_url}{endpoint}"
response = requests.request(method, url, data=data, headers=headers, files=files)
return response
def message_feedback(self, message_id, rating, user):
data = {
"rating": rating,
"user": user
}
data = {"rating": rating, "user": user}
return self._send_request("POST", f"/messages/{message_id}/feedbacks", data)
def get_application_parameters(self, user):
params = {"user": user}
return self._send_request("GET", "/parameters", params=params)
def file_upload(self, user, files):
data = {
"user": user
}
data = {"user": user}
return self._send_request_with_files("POST", "/files/upload", data=data, files=files)
def text_to_audio(self, text:str, user:str, streaming:bool=False):
data = {
"text": text,
"user": user,
"streaming": streaming
}
def text_to_audio(self, text: str, user: str, streaming: bool = False):
data = {"text": text, "user": user, "streaming": streaming}
return self._send_request("POST", "/text-to-audio", data=data)
def get_meta(self,user):
params = { "user": user}
return self._send_request("GET", f"/meta", params=params)
def get_meta(self, user):
params = {"user": user}
return self._send_request("GET", "/meta", params=params)
class CompletionClient(DifyClient):
def create_completion_message(self, inputs, response_mode, user, files=None):
data = {
"inputs": inputs,
"response_mode": response_mode,
"user": user,
"files": files
}
return self._send_request("POST", "/completion-messages", data,
stream=True if response_mode == "streaming" else False)
data = {"inputs": inputs, "response_mode": response_mode, "user": user, "files": files}
return self._send_request(
"POST", "/completion-messages", data, stream=True if response_mode == "streaming" else False
)
class ChatClient(DifyClient):
def create_chat_message(self, inputs, query, user, response_mode="blocking", conversation_id=None, files=None):
data = {
"inputs": inputs,
"query": query,
"user": user,
"response_mode": response_mode,
"files": files
}
data = {"inputs": inputs, "query": query, "user": user, "response_mode": response_mode, "files": files}
if conversation_id:
data["conversation_id"] = conversation_id
return self._send_request("POST", "/chat-messages", data,
stream=True if response_mode == "streaming" else False)
def get_suggested(self, message_id, user:str):
return self._send_request(
"POST", "/chat-messages", data, stream=True if response_mode == "streaming" else False
)
def get_suggested(self, message_id, user: str):
params = {"user": user}
return self._send_request("GET", f"/messages/{message_id}/suggested", params=params)
def stop_message(self, task_id, user):
data = {"user": user}
return self._send_request("POST", f"/chat-messages/{task_id}/stop", data)
return self._send_request("POST", f"/chat-messages/{task_id}/stop", data)
def get_conversations(self, user, last_id=None, limit=None, pinned=None):
params = {"user": user, "last_id": last_id, "limit": limit, "pinned": pinned}
return self._send_request("GET", "/conversations", params=params)
def get_conversation_messages(self, user, conversation_id=None, first_id=None, limit=None):
params = {"user": user}
@ -109,15 +86,15 @@ class ChatClient(DifyClient):
params["limit"] = limit
return self._send_request("GET", "/messages", params=params)
def rename_conversation(self, conversation_id, name,auto_generate:bool, user:str):
data = {"name": name, "auto_generate": auto_generate,"user": user}
def rename_conversation(self, conversation_id, name, auto_generate: bool, user: str):
data = {"name": name, "auto_generate": auto_generate, "user": user}
return self._send_request("POST", f"/conversations/{conversation_id}/name", data)
def delete_conversation(self, conversation_id, user):
data = {"user": user}
return self._send_request("DELETE", f"/conversations/{conversation_id}", data)
def audio_to_text(self, audio_file, user):
data = {"user": user}
files = {"audio_file": audio_file}
@ -125,10 +102,10 @@ class ChatClient(DifyClient):
class WorkflowClient(DifyClient):
def run(self, inputs:dict, response_mode:str="streaming", user:str="abc-123"):
def run(self, inputs: dict, response_mode: str = "streaming", user: str = "abc-123"):
data = {"inputs": inputs, "response_mode": response_mode, "user": user}
return self._send_request("POST", "/workflows/run", data)
def stop(self, task_id, user):
data = {"user": user}
return self._send_request("POST", f"/workflows/tasks/{task_id}/stop", data)
@ -137,10 +114,8 @@ class WorkflowClient(DifyClient):
return self._send_request("GET", f"/workflows/run/{workflow_run_id}")
class KnowledgeBaseClient(DifyClient):
def __init__(self, api_key, base_url: str = 'https://api.dify.ai/v1', dataset_id: str = None):
def __init__(self, api_key, base_url: str = "https://api.dify.ai/v1", dataset_id: str = None):
"""
Construct a KnowledgeBaseClient object.
@ -150,10 +125,7 @@ class KnowledgeBaseClient(DifyClient):
dataset_id (str, optional): ID of the dataset. Defaults to None. You don't need this if you just want to
create a new dataset. or list datasets. otherwise you need to set this.
"""
super().__init__(
api_key=api_key,
base_url=base_url
)
super().__init__(api_key=api_key, base_url=base_url)
self.dataset_id = dataset_id
def _get_dataset_id(self):
@ -162,10 +134,10 @@ class KnowledgeBaseClient(DifyClient):
return self.dataset_id
def create_dataset(self, name: str, **kwargs):
return self._send_request('POST', '/datasets', {'name': name}, **kwargs)
return self._send_request("POST", "/datasets", {"name": name}, **kwargs)
def list_datasets(self, page: int = 1, page_size: int = 20, **kwargs):
return self._send_request('GET', f'/datasets?page={page}&limit={page_size}', **kwargs)
return self._send_request("GET", f"/datasets?page={page}&limit={page_size}", **kwargs)
def create_document_by_text(self, name, text, extra_params: dict = None, **kwargs):
"""
@ -193,14 +165,7 @@ class KnowledgeBaseClient(DifyClient):
}
:return: Response from the API
"""
data = {
'indexing_technique': 'high_quality',
'process_rule': {
'mode': 'automatic'
},
'name': name,
'text': text
}
data = {"indexing_technique": "high_quality", "process_rule": {"mode": "automatic"}, "name": name, "text": text}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
url = f"/datasets/{self._get_dataset_id()}/document/create_by_text"
@ -233,10 +198,7 @@ class KnowledgeBaseClient(DifyClient):
}
:return: Response from the API
"""
data = {
'name': name,
'text': text
}
data = {"name": name, "text": text}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/update_by_text"
@ -269,16 +231,11 @@ class KnowledgeBaseClient(DifyClient):
:return: Response from the API
"""
files = {"file": open(file_path, "rb")}
data = {
'process_rule': {
'mode': 'automatic'
},
'indexing_technique': 'high_quality'
}
data = {"process_rule": {"mode": "automatic"}, "indexing_technique": "high_quality"}
if extra_params is not None and isinstance(extra_params, dict):
data.update(extra_params)
if original_document_id is not None:
data['original_document_id'] = original_document_id
data["original_document_id"] = original_document_id
url = f"/datasets/{self._get_dataset_id()}/document/create_by_file"
return self._send_request_with_files("POST", url, {"data": json.dumps(data)}, files)
@ -352,11 +309,11 @@ class KnowledgeBaseClient(DifyClient):
"""
params = {}
if page is not None:
params['page'] = page
params["page"] = page
if page_size is not None:
params['limit'] = page_size
params["limit"] = page_size
if keyword is not None:
params['keyword'] = keyword
params["keyword"] = keyword
url = f"/datasets/{self._get_dataset_id()}/documents"
return self._send_request("GET", url, params=params, **kwargs)
@ -383,9 +340,9 @@ class KnowledgeBaseClient(DifyClient):
url = f"/datasets/{self._get_dataset_id()}/documents/{document_id}/segments"
params = {}
if keyword is not None:
params['keyword'] = keyword
params["keyword"] = keyword
if status is not None:
params['status'] = status
params["status"] = status
if "params" in kwargs:
params.update(kwargs["params"])
return self._send_request("GET", url, params=params, **kwargs)

View File

@ -15,7 +15,7 @@ const Node: FC<NodeProps<HttpNodeType>> = ({
<div className='mb-1 px-3 py-1'>
<div className='flex items-start p-1 rounded-md bg-gray-100'>
<div className='flex items-center h-4 shrink-0 px-1 rounded bg-gray-25 text-xs font-semibold text-gray-700 uppercase'>{method}</div>
<div className='pl-1'>
<div className='pl-1 pt-1'>
<ReadonlyInputWithSelectVar
value={url}
nodeId={id}

View File

@ -202,7 +202,7 @@ const translation = {
invitationLink: 'Enlace de invitación',
failedInvitationEmails: 'Los siguientes usuarios no fueron invitados exitosamente',
ok: 'OK',
removeFromTeam: 'Eliminar del equipo',
removeFromTeam: 'Eliminar del espacio de trabajo',
removeFromTeamTip: 'Se eliminará el acceso al equipo',
setAdmin: 'Establecer como administrador',
setMember: 'Establecer como miembro ordinario',

View File

@ -200,7 +200,7 @@ const translation = {
invitationLink: '邀请链接',
failedInvitationEmails: '邀请以下邮箱失败',
ok: '好的',
removeFromTeam: '移团队',
removeFromTeam: '移团队',
removeFromTeamTip: '将取消团队访问',
setAdmin: '设为管理员',
setMember: '设为普通成员',

View File

@ -194,7 +194,7 @@ const translation = {
invitationLink: '邀請連結',
failedInvitationEmails: '邀請以下郵箱失敗',
ok: '好的',
removeFromTeam: '移團隊',
removeFromTeam: '移團隊',
removeFromTeamTip: '將取消團隊訪問',
setAdmin: '設為管理員',
setMember: '設為普通成員',

View File

@ -69,38 +69,47 @@
iframe.id = iframeId;
iframe.src = iframeUrl;
iframe.style.cssText = `
border: none; position: fixed; flex-direction: column; justify-content: space-between;
border: none; position: absolute; flex-direction: column; justify-content: space-between;
box-shadow: rgba(150, 150, 150, 0.2) 0px 10px 30px 0px, rgba(150, 150, 150, 0.2) 0px 0px 0px 1px;
bottom: 5rem; right: 1rem; width: 24rem; max-width: calc(100vw - 2rem); height: 40rem;
bottom: 55px; right: 0; width: 24rem; max-width: calc(100vw - 2rem); height: 40rem;
max-height: calc(100vh - 6rem); border-radius: 0.75rem; display: flex; z-index: 2147483647;
overflow: hidden; left: unset; background-color: #F3F4F6;user-select: none;
`;
document.body.appendChild(iframe);
return iframe;
}
// Function to reset the iframe position
function resetIframePosition() {
if (window.innerWidth <= 640)
return
const targetIframe = document.getElementById(iframeId);
const targetButton = document.getElementById(buttonId);
if (targetIframe && targetButton) {
const buttonRect = targetButton.getBoundingClientRect();
const buttonBottom = window.innerHeight - buttonRect.bottom;
const buttonRight = window.innerWidth - buttonRect.right;
const buttonLeft = buttonRect.left;
// Adjust iframe position to stay within viewport
targetIframe.style.bottom = `${
buttonBottom + buttonRect.height + 5 + targetIframe.clientHeight > window.innerHeight
? buttonBottom - targetIframe.clientHeight - 5
: buttonBottom + buttonRect.height + 5
}px`;
const buttonInBottom = buttonRect.top - 5 > targetIframe.clientHeight
targetIframe.style.right = `${
buttonRight + targetIframe.clientWidth > window.innerWidth
? window.innerWidth - buttonLeft - targetIframe.clientWidth
: buttonRight
}px`;
if (buttonInBottom) {
targetIframe.style.bottom = `${buttonRect.height + 5}px`;
targetIframe.style.top = 'unset';
}
else {
targetIframe.style.bottom = 'unset';
targetIframe.style.top = `${buttonRect.height + 5}px`;
}
const buttonInRight = buttonRect.right > targetIframe.clientWidth;
if (buttonInRight) {
targetIframe.style.right = '0';
targetIframe.style.left = 'unset';
}
else {
targetIframe.style.right = 'unset';
targetIframe.style.left = 0;
}
}
}
@ -146,12 +155,6 @@
box-shadow: var(--${containerDiv.id}-box-shadow, rgba(0, 0, 0, 0.2) 0px 4px 8px 0px);
cursor: pointer;
z-index: 2147483647;
transition: all 0.2s ease-in-out 0s;
}
`);
styleSheet.sheet.insertRule(`
#${containerDiv.id}:hover {
transform: var(--${containerDiv.id}-hover-transform, scale(1.1));
}
`);
@ -167,7 +170,7 @@
containerDiv.addEventListener("click", function () {
const targetIframe = document.getElementById(iframeId);
if (!targetIframe) {
createIframe();
containerDiv.appendChild(createIframe());
resetIframePosition();
this.title = "Exit (ESC)";
displayDiv.innerHTML = svgIcons.close;
@ -255,9 +258,6 @@
if (!document.getElementById(buttonId)) {
createButton();
}
createIframe();
document.getElementById(iframeId).style.display = 'none';
}
// Add esc Exit keyboard event triggered
@ -279,4 +279,4 @@
} else {
document.body.onload = embedChatbot;
}
})();
})();

View File

@ -1,31 +1,26 @@
(()=>{let t="difyChatbotConfig",a="dify-chatbot-bubble-button",c="dify-chatbot-bubble-window",h=window[t],p={open:`<svg id="openIcon" width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path fill-rule="evenodd" clip-rule="evenodd" d="M7.7586 2L16.2412 2C17.0462 1.99999 17.7105 1.99998 18.2517 2.04419C18.8138 2.09012 19.3305 2.18868 19.8159 2.43598C20.5685 2.81947 21.1804 3.43139 21.5639 4.18404C21.8112 4.66937 21.9098 5.18608 21.9557 5.74818C21.9999 6.28937 21.9999 6.95373 21.9999 7.7587L22 14.1376C22.0004 14.933 22.0007 15.5236 21.8636 16.0353C21.4937 17.4156 20.4155 18.4938 19.0352 18.8637C18.7277 18.9461 18.3917 18.9789 17.9999 18.9918L17.9999 20.371C18 20.6062 18 20.846 17.9822 21.0425C17.9651 21.2305 17.9199 21.5852 17.6722 21.8955C17.3872 22.2525 16.9551 22.4602 16.4983 22.4597C16.1013 22.4593 15.7961 22.273 15.6386 22.1689C15.474 22.06 15.2868 21.9102 15.1031 21.7632L12.69 19.8327C12.1714 19.4178 12.0174 19.3007 11.8575 19.219C11.697 19.137 11.5262 19.0771 11.3496 19.0408C11.1737 19.0047 10.9803 19 10.3162 19H7.75858C6.95362 19 6.28927 19 5.74808 18.9558C5.18598 18.9099 4.66928 18.8113 4.18394 18.564C3.43129 18.1805 2.81937 17.5686 2.43588 16.816C2.18859 16.3306 2.09002 15.8139 2.0441 15.2518C1.99988 14.7106 1.99989 14.0463 1.9999 13.2413V7.75868C1.99989 6.95372 1.99988 6.28936 2.0441 5.74818C2.09002 5.18608 2.18859 4.66937 2.43588 4.18404C2.81937 3.43139 3.43129 2.81947 4.18394 2.43598C4.66928 2.18868 5.18598 2.09012 5.74808 2.04419C6.28927 1.99998 6.95364 1.99999 7.7586 2ZM10.5073 7.5C10.5073 6.67157 9.83575 6 9.00732 6C8.1789 6 7.50732 6.67157 7.50732 7.5C7.50732 8.32843 8.1789 9 9.00732 9C9.83575 9 10.5073 8.32843 10.5073 7.5ZM16.6073 11.7001C16.1669 11.3697 15.5426 11.4577 15.2105 11.8959C15.1488 11.9746 15.081 12.0486 15.0119 12.1207C14.8646 12.2744 14.6432 12.4829 14.3566 12.6913C13.7796 13.111 12.9818 13.5001 12.0073 13.5001C11.0328 13.5001 10.235 13.111 9.65799 12.6913C9.37138 12.4829 9.15004 12.2744 9.00274 12.1207C8.93366 12.0486 8.86581 11.9745 8.80418 11.8959C8.472 11.4577 7.84775 11.3697 7.40732 11.7001C6.96549 12.0314 6.87595 12.6582 7.20732 13.1001C7.20479 13.0968 7.21072 13.1043 7.22094 13.1171C7.24532 13.1478 7.29407 13.2091 7.31068 13.2289C7.36932 13.2987 7.45232 13.3934 7.55877 13.5045C7.77084 13.7258 8.08075 14.0172 8.48165 14.3088C9.27958 14.8891 10.4818 15.5001 12.0073 15.5001C13.5328 15.5001 14.735 14.8891 15.533 14.3088C15.9339 14.0172 16.2438 13.7258 16.4559 13.5045C16.5623 13.3934 16.6453 13.2987 16.704 13.2289C16.7333 13.1939 16.7567 13.165 16.7739 13.1432C17.1193 12.6969 17.0729 12.0493 16.6073 11.7001ZM15.0073 6C15.8358 6 16.5073 6.67157 16.5073 7.5C16.5073 8.32843 15.8358 9 15.0073 9C14.1789 9 13.5073 8.32843 13.5073 7.5C13.5073 6.67157 14.1789 6 15.0073 6Z" fill="white"/>
</svg>`,close:`<svg id="closeIcon" width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M18 18L6 6M6 18L18 6" stroke="white" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"/>
</svg>`};async function e(){if(h&&h.token){var e=new URLSearchParams(await(async()=>{var e=h?.inputs||{};let n={};return await Promise.all(Object.entries(e).map(async([e,t])=>{n[e]=(e=t,e=(new TextEncoder).encode(e),e=new Response(new Blob([e]).stream().pipeThrough(new CompressionStream("gzip"))).arrayBuffer(),e=new Uint8Array(await e),await btoa(String.fromCharCode(...e)))})),n})());let t=`${h.baseUrl||`https://${h.isDev?"dev.":""}udify.app`}/chatbot/${h.token}?`+e;function o(){var e=document.createElement("iframe");e.allow="fullscreen;microphone",e.title="dify chatbot bubble window",e.id=c,e.src=t,e.style.cssText=`
border: none; position: fixed; flex-direction: column; justify-content: space-between;
box-shadow: rgba(150, 150, 150, 0.2) 0px 10px 30px 0px, rgba(150, 150, 150, 0.2) 0px 0px 0px 1px;
bottom: 5rem; right: 1rem; width: 24rem; max-width: calc(100vw - 2rem); height: 40rem;
max-height: calc(100vh - 6rem); border-radius: 0.75rem; display: flex; z-index: 2147483647;
overflow: hidden; left: unset; background-color: #F3F4F6;user-select: none;
`,document.body.appendChild(e)}function i(){var e,t,n,o=document.getElementById(c),i=document.getElementById(a);o&&i&&(i=i.getBoundingClientRect(),e=window.innerHeight-i.bottom,t=window.innerWidth-i.right,n=i.left,o.style.bottom=`${e+i.height+5+o.clientHeight>window.innerHeight?e-o.clientHeight-5:e+i.height+5}px`,o.style.right=`${t+o.clientWidth>window.innerWidth?window.innerWidth-n-o.clientWidth:t}px`)}function n(){let n=document.createElement("div");Object.entries(h.containerProps||{}).forEach(([e,t])=>{"className"===e?n.classList.add(...t.split(" ")):"style"===e?"object"==typeof t?Object.assign(n.style,t):n.style.cssText=t:"function"==typeof t?n.addEventListener(e.replace(/^on/,"").toLowerCase(),t):n[e]=t}),n.id=a;var e=document.createElement("style");document.head.appendChild(e),e.sheet.insertRule(`
#${n.id} {
position: fixed;
bottom: var(--${n.id}-bottom, 1rem);
right: var(--${n.id}-right, 1rem);
left: var(--${n.id}-left, unset);
top: var(--${n.id}-top, unset);
width: var(--${n.id}-width, 50px);
height: var(--${n.id}-height, 50px);
border-radius: var(--${n.id}-border-radius, 25px);
background-color: var(--${n.id}-bg-color, #155EEF);
box-shadow: var(--${n.id}-box-shadow, rgba(0, 0, 0, 0.2) 0px 4px 8px 0px);
cursor: pointer;
z-index: 2147483647;
transition: all 0.2s ease-in-out 0s;
}
`),e.sheet.insertRule(`
#${n.id}:hover {
transform: var(--${n.id}-hover-transform, scale(1.1));
}
`);let t=document.createElement("div");if(t.style.cssText="display: flex; align-items: center; justify-content: center; width: 100%; height: 100%; z-index: 2147483647;",t.innerHTML=p.open,n.appendChild(t),document.body.appendChild(n),n.addEventListener("click",function(){var e=document.getElementById(c);e?(e.style.display="none"===e.style.display?"block":"none",t.innerHTML="none"===e.style.display?p.open:p.close,"none"===e.style.display?document.removeEventListener("keydown",d):document.addEventListener("keydown",d),i()):(o(),i(),this.title="Exit (ESC)",t.innerHTML=p.close,document.addEventListener("keydown",d))}),h.draggable){var s=n;var l=h.dragAxis||"both";let i=!1,d,r;s.addEventListener("mousedown",function(e){i=!0,d=e.clientX-s.offsetLeft,r=e.clientY-s.offsetTop}),document.addEventListener("mousemove",function(e){var t,n,o;i&&(s.style.transition="none",s.style.cursor="grabbing",(t=document.getElementById(c))&&(t.style.display="none",s.querySelector("div").innerHTML=p.open),t=e.clientX-d,e=window.innerHeight-e.clientY-r,o=s.getBoundingClientRect(),n=window.innerWidth-o.width,o=window.innerHeight-o.height,"x"!==l&&"both"!==l||s.style.setProperty(`--${a}-left`,Math.max(0,Math.min(t,n))+"px"),"y"!==l&&"both"!==l||s.style.setProperty(`--${a}-bottom`,Math.max(0,Math.min(e,o))+"px"))}),document.addEventListener("mouseup",function(){i=!1,s.style.transition="",s.style.cursor="pointer"})}}2048<t.length&&console.error("The URL is too long, please reduce the number of inputs to prevent the bot from failing to load"),document.getElementById(a)||n(),o(),document.getElementById(c).style.display="none"}else console.error(t+" is empty or token is not provided")}function d(e){var t;"Escape"===e.key&&(e=document.getElementById(c),t=document.getElementById(a),e)&&"none"!==e.style.display&&(e.style.display="none",t.querySelector("div").innerHTML=p.open)}document.addEventListener("keydown",d),h?.dynamicScript?e():document.body.onload=e})();
!function(){const n="difyChatbotConfig",a="dify-chatbot-bubble-button",c="dify-chatbot-bubble-window",p=window[n],h={open:`<svg id="openIcon" width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path fill-rule="evenodd" clip-rule="evenodd" d="M7.7586 2L16.2412 2C17.0462 1.99999 17.7105 1.99998 18.2517 2.04419C18.8138 2.09012 19.3305 2.18868 19.8159 2.43598C20.5685 2.81947 21.1804 3.43139 21.5639 4.18404C21.8112 4.66937 21.9098 5.18608 21.9557 5.74818C21.9999 6.28937 21.9999 6.95373 21.9999 7.7587L22 14.1376C22.0004 14.933 22.0007 15.5236 21.8636 16.0353C21.4937 17.4156 20.4155 18.4938 19.0352 18.8637C18.7277 18.9461 18.3917 18.9789 17.9999 18.9918L17.9999 20.371C18 20.6062 18 20.846 17.9822 21.0425C17.9651 21.2305 17.9199 21.5852 17.6722 21.8955C17.3872 22.2525 16.9551 22.4602 16.4983 22.4597C16.1013 22.4593 15.7961 22.273 15.6386 22.1689C15.474 22.06 15.2868 21.9102 15.1031 21.7632L12.69 19.8327C12.1714 19.4178 12.0174 19.3007 11.8575 19.219C11.697 19.137 11.5262 19.0771 11.3496 19.0408C11.1737 19.0047 10.9803 19 10.3162 19H7.75858C6.95362 19 6.28927 19 5.74808 18.9558C5.18598 18.9099 4.66928 18.8113 4.18394 18.564C3.43129 18.1805 2.81937 17.5686 2.43588 16.816C2.18859 16.3306 2.09002 15.8139 2.0441 15.2518C1.99988 14.7106 1.99989 14.0463 1.9999 13.2413V7.75868C1.99989 6.95372 1.99988 6.28936 2.0441 5.74818C2.09002 5.18608 2.18859 4.66937 2.43588 4.18404C2.81937 3.43139 3.43129 2.81947 4.18394 2.43598C4.66928 2.18868 5.18598 2.09012 5.74808 2.04419C6.28927 1.99998 6.95364 1.99999 7.7586 2ZM10.5073 7.5C10.5073 6.67157 9.83575 6 9.00732 6C8.1789 6 7.50732 6.67157 7.50732 7.5C7.50732 8.32843 8.1789 9 9.00732 9C9.83575 9 10.5073 8.32843 10.5073 7.5ZM16.6073 11.7001C16.1669 11.3697 15.5426 11.4577 15.2105 11.8959C15.1488 11.9746 15.081 12.0486 15.0119 12.1207C14.8646 12.2744 14.6432 12.4829 14.3566 12.6913C13.7796 13.111 12.9818 13.5001 12.0073 13.5001C11.0328 13.5001 10.235 13.111 9.65799 12.6913C9.37138 12.4829 9.15004 12.2744 9.00274 12.1207C8.93366 12.0486 8.86581 11.9745 8.80418 11.8959C8.472 11.4577 7.84775 11.3697 7.40732 11.7001C6.96549 12.0314 6.87595 12.6582 7.20732 13.1001C7.20479 13.0968 7.21072 13.1043 7.22094 13.1171C7.24532 13.1478 7.29407 13.2091 7.31068 13.2289C7.36932 13.2987 7.45232 13.3934 7.55877 13.5045C7.77084 13.7258 8.08075 14.0172 8.48165 14.3088C9.27958 14.8891 10.4818 15.5001 12.0073 15.5001C13.5328 15.5001 14.735 14.8891 15.533 14.3088C15.9339 14.0172 16.2438 13.7258 16.4559 13.5045C16.5623 13.3934 16.6453 13.2987 16.704 13.2289C16.7333 13.1939 16.7567 13.165 16.7739 13.1432C17.1193 12.6969 17.0729 12.0493 16.6073 11.7001ZM15.0073 6C15.8358 6 16.5073 6.67157 16.5073 7.5C16.5073 8.32843 15.8358 9 15.0073 9C14.1789 9 13.5073 8.32843 13.5073 7.5C13.5073 6.67157 14.1789 6 15.0073 6Z" fill="white"/>
</svg>`,close:`<svg id="closeIcon" width="24" height="24" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg">
<path d="M18 18L6 6M6 18L18 6" stroke="white" stroke-width="2" stroke-linecap="round" stroke-linejoin="round"/>
</svg>`};async function e(){if(p&&p.token){var e=new URLSearchParams(await async function(){var e=p?.inputs||{};const n={};return await Promise.all(Object.entries(e).map(async([e,t])=>{n[e]=(e=t,e=(new TextEncoder).encode(e),e=new Response(new Blob([e]).stream().pipeThrough(new CompressionStream("gzip"))).arrayBuffer(),e=new Uint8Array(await e),await btoa(String.fromCharCode(...e)))})),n}());const i=`${p.baseUrl||`https://${p.isDev?"dev.":""}udify.app`}/chatbot/${p.token}?`+e;function o(){var e,t;window.innerWidth<=640||(e=document.getElementById(c),t=document.getElementById(a),e&&t&&((t=t.getBoundingClientRect()).top-5>e.clientHeight?(e.style.bottom=t.height+5+"px",e.style.top="unset"):(e.style.bottom="unset",e.style.top=t.height+5+"px"),t.right>e.clientWidth?(e.style.right="0",e.style.left="unset"):(e.style.right="unset",e.style.left=0)))}function t(){const n=document.createElement("div");Object.entries(p.containerProps||{}).forEach(([e,t])=>{"className"===e?n.classList.add(...t.split(" ")):"style"===e?"object"==typeof t?Object.assign(n.style,t):n.style.cssText=t:"function"==typeof t?n.addEventListener(e.replace(/^on/,"").toLowerCase(),t):n[e]=t}),n.id=a;var e=document.createElement("style");document.head.appendChild(e),e.sheet.insertRule(`
#${n.id} {
position: fixed;
bottom: var(--${n.id}-bottom, 1rem);
right: var(--${n.id}-right, 1rem);
left: var(--${n.id}-left, unset);
top: var(--${n.id}-top, unset);
width: var(--${n.id}-width, 50px);
height: var(--${n.id}-height, 50px);
border-radius: var(--${n.id}-border-radius, 25px);
background-color: var(--${n.id}-bg-color, #155EEF);
box-shadow: var(--${n.id}-box-shadow, rgba(0, 0, 0, 0.2) 0px 4px 8px 0px);
cursor: pointer;
z-index: 2147483647;
}
`);const t=document.createElement("div");if(t.style.cssText="display: flex; align-items: center; justify-content: center; width: 100%; height: 100%; z-index: 2147483647;",t.innerHTML=h.open,n.appendChild(t),document.body.appendChild(n),n.addEventListener("click",function(){var e=document.getElementById(c);e?(e.style.display="none"===e.style.display?"block":"none",t.innerHTML="none"===e.style.display?h.open:h.close,"none"===e.style.display?document.removeEventListener("keydown",d):document.addEventListener("keydown",d),o()):(n.appendChild(((e=document.createElement("iframe")).allow="fullscreen;microphone",e.title="dify chatbot bubble window",e.id=c,e.src=i,e.style.cssText=`
border: none; position: absolute; flex-direction: column; justify-content: space-between;
box-shadow: rgba(150, 150, 150, 0.2) 0px 10px 30px 0px, rgba(150, 150, 150, 0.2) 0px 0px 0px 1px;
bottom: 55px; right: 0; width: 24rem; max-width: calc(100vw - 2rem); height: 40rem;
max-height: calc(100vh - 6rem); border-radius: 0.75rem; display: flex; z-index: 2147483647;
overflow: hidden; left: unset; background-color: #F3F4F6;user-select: none;
`,e)),o(),this.title="Exit (ESC)",t.innerHTML=h.close,document.addEventListener("keydown",d))}),p.draggable){var s=n;var l=p.dragAxis||"both";let i=!1,d,r;s.addEventListener("mousedown",function(e){i=!0,d=e.clientX-s.offsetLeft,r=e.clientY-s.offsetTop}),document.addEventListener("mousemove",function(e){var t,n,o;i&&(s.style.transition="none",s.style.cursor="grabbing",(t=document.getElementById(c))&&(t.style.display="none",s.querySelector("div").innerHTML=h.open),t=e.clientX-d,e=window.innerHeight-e.clientY-r,o=s.getBoundingClientRect(),n=window.innerWidth-o.width,o=window.innerHeight-o.height,"x"!==l&&"both"!==l||s.style.setProperty(`--${a}-left`,Math.max(0,Math.min(t,n))+"px"),"y"!==l&&"both"!==l||s.style.setProperty(`--${a}-bottom`,Math.max(0,Math.min(e,o))+"px"))}),document.addEventListener("mouseup",function(){i=!1,s.style.transition="",s.style.cursor="pointer"})}}2048<i.length&&console.error("The URL is too long, please reduce the number of inputs to prevent the bot from failing to load"),document.getElementById(a)||t()}else console.error(n+" is empty or token is not provided")}function d(e){var t;"Escape"===e.key&&(e=document.getElementById(c),t=document.getElementById(a),e)&&"none"!==e.style.display&&(e.style.display="none",t.querySelector("div").innerHTML=h.open)}document.addEventListener("keydown",d),p?.dynamicScript?e():document.body.onload=e}();