mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat: support elasticsearch vector database (#3558)
Co-authored-by: miendinh <miendinh@users.noreply.github.com> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: crazywoola <427733928@qq.com>
This commit is contained in:
parent
4423710a13
commit
f104b930cf
3
.github/workflows/api-tests.yml
vendored
3
.github/workflows/api-tests.yml
vendored
|
@ -76,7 +76,7 @@ jobs:
|
|||
- name: Run Workflow
|
||||
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
|
||||
|
||||
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale)
|
||||
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch)
|
||||
uses: hoverkraft-tech/compose-action@v2.0.0
|
||||
with:
|
||||
compose-file: |
|
||||
|
@ -90,5 +90,6 @@ jobs:
|
|||
pgvecto-rs
|
||||
pgvector
|
||||
chroma
|
||||
elasticsearch
|
||||
- name: Test Vector Stores
|
||||
run: poetry run -C api bash dev/pytest/pytest_vdb.sh
|
||||
|
|
3
.github/workflows/expose_service_ports.sh
vendored
3
.github/workflows/expose_service_ports.sh
vendored
|
@ -6,5 +6,6 @@ yq eval '.services.chroma.ports += ["8000:8000"]' -i docker/docker-compose.yaml
|
|||
yq eval '.services["milvus-standalone"].ports += ["19530:19530"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services.pgvector.ports += ["5433:5432"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services["pgvecto-rs"].ports += ["5431:5432"]' -i docker/docker-compose.yaml
|
||||
yq eval '.services["elasticsearch"].ports += ["9200:9200"]' -i docker/docker-compose.yaml
|
||||
|
||||
echo "Ports exposed for sandbox, weaviate, qdrant, chroma, milvus, pgvector, pgvecto-rs."
|
||||
echo "Ports exposed for sandbox, weaviate, qdrant, chroma, milvus, pgvector, pgvecto-rs, elasticsearch"
|
|
@ -130,6 +130,12 @@ TENCENT_VECTOR_DB_DATABASE=dify
|
|||
TENCENT_VECTOR_DB_SHARD=1
|
||||
TENCENT_VECTOR_DB_REPLICAS=2
|
||||
|
||||
# ElasticSearch configuration
|
||||
ELASTICSEARCH_HOST=127.0.0.1
|
||||
ELASTICSEARCH_PORT=9200
|
||||
ELASTICSEARCH_USERNAME=elastic
|
||||
ELASTICSEARCH_PASSWORD=elastic
|
||||
|
||||
# PGVECTO_RS configuration
|
||||
PGVECTO_RS_HOST=localhost
|
||||
PGVECTO_RS_PORT=5431
|
||||
|
|
|
@ -344,6 +344,14 @@ def migrate_knowledge_vector_database():
|
|||
"vector_store": {"class_prefix": collection_name}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
elif vector_type == VectorType.ELASTICSEARCH:
|
||||
dataset_id = dataset.id
|
||||
index_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
index_struct_dict = {
|
||||
"type": 'elasticsearch',
|
||||
"vector_store": {"class_prefix": index_name}
|
||||
}
|
||||
dataset.index_struct = json.dumps(index_struct_dict)
|
||||
else:
|
||||
raise ValueError(f"Vector store {vector_type} is not supported.")
|
||||
|
||||
|
|
|
@ -555,7 +555,7 @@ class DatasetRetrievalSettingApi(Resource):
|
|||
RetrievalMethod.SEMANTIC_SEARCH.value
|
||||
]
|
||||
}
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH | VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
|
@ -579,7 +579,7 @@ class DatasetRetrievalSettingMockApi(Resource):
|
|||
RetrievalMethod.SEMANTIC_SEARCH.value
|
||||
]
|
||||
}
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE:
|
||||
case VectorType.QDRANT | VectorType.WEAVIATE | VectorType.OPENSEARCH| VectorType.ANALYTICDB | VectorType.MYSCALE | VectorType.ORACLE | VectorType.ELASTICSEARCH:
|
||||
return {
|
||||
'retrieval_method': [
|
||||
RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
|
|
|
@ -0,0 +1,191 @@
|
|||
import json
|
||||
from typing import Any
|
||||
|
||||
import requests
|
||||
from elasticsearch import Elasticsearch
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from models.dataset import Dataset
|
||||
|
||||
|
||||
class ElasticSearchConfig(BaseModel):
|
||||
host: str
|
||||
port: str
|
||||
username: str
|
||||
password: str
|
||||
|
||||
@model_validator(mode='before')
|
||||
def validate_config(cls, values: dict) -> dict:
|
||||
if not values['host']:
|
||||
raise ValueError("config HOST is required")
|
||||
if not values['port']:
|
||||
raise ValueError("config PORT is required")
|
||||
if not values['username']:
|
||||
raise ValueError("config USERNAME is required")
|
||||
if not values['password']:
|
||||
raise ValueError("config PASSWORD is required")
|
||||
return values
|
||||
|
||||
|
||||
class ElasticSearchVector(BaseVector):
|
||||
def __init__(self, index_name: str, config: ElasticSearchConfig, attributes: list):
|
||||
super().__init__(index_name.lower())
|
||||
self._client = self._init_client(config)
|
||||
self._attributes = attributes
|
||||
|
||||
def _init_client(self, config: ElasticSearchConfig) -> Elasticsearch:
|
||||
try:
|
||||
client = Elasticsearch(
|
||||
hosts=f'{config.host}:{config.port}',
|
||||
basic_auth=(config.username, config.password),
|
||||
request_timeout=100000,
|
||||
retry_on_timeout=True,
|
||||
max_retries=10000,
|
||||
)
|
||||
except requests.exceptions.ConnectionError:
|
||||
raise ConnectionError("Vector database connection error")
|
||||
|
||||
return client
|
||||
|
||||
def get_type(self) -> str:
|
||||
return 'elasticsearch'
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
uuids = self._get_uuids(documents)
|
||||
texts = [d.page_content for d in documents]
|
||||
metadatas = [d.metadata for d in documents]
|
||||
|
||||
if not self._client.indices.exists(index=self._collection_name):
|
||||
dim = len(embeddings[0])
|
||||
mapping = {
|
||||
"properties": {
|
||||
"text": {
|
||||
"type": "text"
|
||||
},
|
||||
"vector": {
|
||||
"type": "dense_vector",
|
||||
"index": True,
|
||||
"dims": dim,
|
||||
"similarity": "l2_norm"
|
||||
},
|
||||
}
|
||||
}
|
||||
self._client.indices.create(index=self._collection_name, mappings=mapping)
|
||||
|
||||
added_ids = []
|
||||
for i, text in enumerate(texts):
|
||||
self._client.index(index=self._collection_name,
|
||||
id=uuids[i],
|
||||
document={
|
||||
"text": text,
|
||||
"vector": embeddings[i] if embeddings[i] else None,
|
||||
"metadata": metadatas[i] if metadatas[i] else {},
|
||||
})
|
||||
added_ids.append(uuids[i])
|
||||
|
||||
self._client.indices.refresh(index=self._collection_name)
|
||||
return uuids
|
||||
|
||||
def text_exists(self, id: str) -> bool:
|
||||
return self._client.exists(index=self._collection_name, id=id).__bool__()
|
||||
|
||||
def delete_by_ids(self, ids: list[str]) -> None:
|
||||
for id in ids:
|
||||
self._client.delete(index=self._collection_name, id=id)
|
||||
|
||||
def delete_by_metadata_field(self, key: str, value: str) -> None:
|
||||
query_str = {
|
||||
'query': {
|
||||
'match': {
|
||||
f'metadata.{key}': f'{value}'
|
||||
}
|
||||
}
|
||||
}
|
||||
results = self._client.search(index=self._collection_name, body=query_str)
|
||||
ids = [hit['_id'] for hit in results['hits']['hits']]
|
||||
if ids:
|
||||
self.delete_by_ids(ids)
|
||||
|
||||
def delete(self) -> None:
|
||||
self._client.indices.delete(index=self._collection_name)
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
query_str = {
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {
|
||||
"match_all": {}
|
||||
},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
|
||||
"params": {
|
||||
"query_vector": query_vector
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
results = self._client.search(index=self._collection_name, body=query_str)
|
||||
|
||||
docs_and_scores = []
|
||||
for hit in results['hits']['hits']:
|
||||
docs_and_scores.append(
|
||||
(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']), hit['_score']))
|
||||
|
||||
docs = []
|
||||
for doc, score in docs_and_scores:
|
||||
score_threshold = kwargs.get("score_threshold", .0) if kwargs.get('score_threshold', .0) else 0.0
|
||||
if score > score_threshold:
|
||||
doc.metadata['score'] = score
|
||||
docs.append(doc)
|
||||
|
||||
# Sort the documents by score in descending order
|
||||
docs = sorted(docs, key=lambda x: x.metadata['score'], reverse=True)
|
||||
|
||||
return docs
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
query_str = {
|
||||
"match": {
|
||||
"text": query
|
||||
}
|
||||
}
|
||||
results = self._client.search(index=self._collection_name, query=query_str)
|
||||
docs = []
|
||||
for hit in results['hits']['hits']:
|
||||
docs.append(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']))
|
||||
|
||||
return docs
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
return self.add_texts(texts, embeddings, **kwargs)
|
||||
|
||||
|
||||
class ElasticSearchVectorFactory(AbstractVectorFactory):
|
||||
def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> ElasticSearchVector:
|
||||
if dataset.index_struct_dict:
|
||||
class_prefix: str = dataset.index_struct_dict['vector_store']['class_prefix']
|
||||
collection_name = class_prefix
|
||||
else:
|
||||
dataset_id = dataset.id
|
||||
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
|
||||
dataset.index_struct = json.dumps(
|
||||
self.gen_index_struct_dict(VectorType.ELASTICSEARCH, collection_name))
|
||||
|
||||
config = current_app.config
|
||||
return ElasticSearchVector(
|
||||
index_name=collection_name,
|
||||
config=ElasticSearchConfig(
|
||||
host=config.get('ELASTICSEARCH_HOST'),
|
||||
port=config.get('ELASTICSEARCH_PORT'),
|
||||
username=config.get('ELASTICSEARCH_USERNAME'),
|
||||
password=config.get('ELASTICSEARCH_PASSWORD'),
|
||||
),
|
||||
attributes=[]
|
||||
)
|
|
@ -71,6 +71,9 @@ class Vector:
|
|||
case VectorType.RELYT:
|
||||
from core.rag.datasource.vdb.relyt.relyt_vector import RelytVectorFactory
|
||||
return RelytVectorFactory
|
||||
case VectorType.ELASTICSEARCH:
|
||||
from core.rag.datasource.vdb.elasticsearch.elasticsearch_vector import ElasticSearchVectorFactory
|
||||
return ElasticSearchVectorFactory
|
||||
case VectorType.TIDB_VECTOR:
|
||||
from core.rag.datasource.vdb.tidb_vector.tidb_vector import TiDBVectorFactory
|
||||
return TiDBVectorFactory
|
||||
|
|
|
@ -15,3 +15,4 @@ class VectorType(str, Enum):
|
|||
OPENSEARCH = 'opensearch'
|
||||
TENCENT = 'tencent'
|
||||
ORACLE = 'oracle'
|
||||
ELASTICSEARCH = 'elasticsearch'
|
||||
|
|
40
api/poetry.lock
generated
40
api/poetry.lock
generated
|
@ -2100,6 +2100,44 @@ primp = ">=0.5.5"
|
|||
dev = ["mypy (>=1.11.0)", "pytest (>=8.3.1)", "pytest-asyncio (>=0.23.8)", "ruff (>=0.5.5)"]
|
||||
lxml = ["lxml (>=5.2.2)"]
|
||||
|
||||
[[package]]
|
||||
name = "elastic-transport"
|
||||
version = "8.15.0"
|
||||
description = "Transport classes and utilities shared among Python Elastic client libraries"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "elastic_transport-8.15.0-py3-none-any.whl", hash = "sha256:d7080d1dada2b4eee69e7574f9c17a76b42f2895eff428e562f94b0360e158c0"},
|
||||
{file = "elastic_transport-8.15.0.tar.gz", hash = "sha256:85d62558f9baafb0868c801233a59b235e61d7b4804c28c2fadaa866b6766233"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
certifi = "*"
|
||||
urllib3 = ">=1.26.2,<3"
|
||||
|
||||
[package.extras]
|
||||
develop = ["aiohttp", "furo", "httpx", "opentelemetry-api", "opentelemetry-sdk", "orjson", "pytest", "pytest-asyncio", "pytest-cov", "pytest-httpserver", "pytest-mock", "requests", "respx", "sphinx (>2)", "sphinx-autodoc-typehints", "trustme"]
|
||||
|
||||
[[package]]
|
||||
name = "elasticsearch"
|
||||
version = "8.14.0"
|
||||
description = "Python client for Elasticsearch"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "elasticsearch-8.14.0-py3-none-any.whl", hash = "sha256:cef8ef70a81af027f3da74a4f7d9296b390c636903088439087b8262a468c130"},
|
||||
{file = "elasticsearch-8.14.0.tar.gz", hash = "sha256:aa2490029dd96f4015b333c1827aa21fd6c0a4d223b00dfb0fe933b8d09a511b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
elastic-transport = ">=8.13,<9"
|
||||
|
||||
[package.extras]
|
||||
async = ["aiohttp (>=3,<4)"]
|
||||
orjson = ["orjson (>=3)"]
|
||||
requests = ["requests (>=2.4.0,!=2.32.2,<3.0.0)"]
|
||||
vectorstore-mmr = ["numpy (>=1)", "simsimd (>=3)"]
|
||||
|
||||
[[package]]
|
||||
name = "emoji"
|
||||
version = "2.12.1"
|
||||
|
@ -9546,4 +9584,4 @@ cffi = ["cffi (>=1.11)"]
|
|||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<3.13"
|
||||
content-hash = "2b822039247a445f72e04e967aef84f841781e2789b70071acad022f36ba26a5"
|
||||
content-hash = "05dfa6b9bce9ed8ac21caf58eff1596f146080ab2ab6987924b189be673c22cf"
|
||||
|
|
|
@ -181,6 +181,7 @@ zhipuai = "1.0.7"
|
|||
rank-bm25 = "~0.2.2"
|
||||
openpyxl = "^3.1.5"
|
||||
kaleido = "0.2.1"
|
||||
elasticsearch = "8.14.0"
|
||||
|
||||
############################################################
|
||||
# Tool dependencies required by tool implementations
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
from core.rag.datasource.vdb.elasticsearch.elasticsearch_vector import ElasticSearchConfig, ElasticSearchVector
|
||||
from tests.integration_tests.vdb.test_vector_store import (
|
||||
AbstractVectorTest,
|
||||
setup_mock_redis,
|
||||
)
|
||||
|
||||
|
||||
class ElasticSearchVectorTest(AbstractVectorTest):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.attributes = ['doc_id', 'dataset_id', 'document_id', 'doc_hash']
|
||||
self.vector = ElasticSearchVector(
|
||||
index_name=self.collection_name.lower(),
|
||||
config=ElasticSearchConfig(
|
||||
host='http://localhost',
|
||||
port='9200',
|
||||
username='elastic',
|
||||
password='elastic'
|
||||
),
|
||||
attributes=self.attributes
|
||||
)
|
||||
|
||||
|
||||
def test_elasticsearch_vector(setup_mock_redis):
|
||||
ElasticSearchVectorTest().run_all_tests()
|
|
@ -7,4 +7,5 @@ pytest api/tests/integration_tests/vdb/chroma \
|
|||
api/tests/integration_tests/vdb/pgvector \
|
||||
api/tests/integration_tests/vdb/qdrant \
|
||||
api/tests/integration_tests/vdb/weaviate \
|
||||
api/tests/integration_tests/vdb/elasticsearch \
|
||||
api/tests/integration_tests/vdb/test_vector_store.py
|
|
@ -169,6 +169,11 @@ services:
|
|||
CHROMA_DATABASE: default_database
|
||||
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
|
||||
CHROMA_AUTH_CREDENTIALS: xxxxxx
|
||||
# ElasticSearch Config
|
||||
ELASTICSEARCH_HOST: 127.0.0.1
|
||||
ELASTICSEARCH_PORT: 9200
|
||||
ELASTICSEARCH_USERNAME: elastic
|
||||
ELASTICSEARCH_PASSWORD: elastic
|
||||
# Mail configuration, support: resend, smtp
|
||||
MAIL_TYPE: ''
|
||||
# default send from email address, if not specified
|
||||
|
@ -371,6 +376,11 @@ services:
|
|||
CHROMA_DATABASE: default_database
|
||||
CHROMA_AUTH_PROVIDER: chromadb.auth.token_authn.TokenAuthClientProvider
|
||||
CHROMA_AUTH_CREDENTIALS: xxxxxx
|
||||
# ElasticSearch Config
|
||||
ELASTICSEARCH_HOST: 127.0.0.1
|
||||
ELASTICSEARCH_PORT: 9200
|
||||
ELASTICSEARCH_USERNAME: elastic
|
||||
ELASTICSEARCH_PASSWORD: elastic
|
||||
# Notion import configuration, support public and internal
|
||||
NOTION_INTEGRATION_TYPE: public
|
||||
NOTION_CLIENT_SECRET: you-client-secret
|
||||
|
|
|
@ -125,6 +125,10 @@ x-shared-env: &shared-api-worker-env
|
|||
CHROMA_DATABASE: ${CHROMA_DATABASE:-default_database}
|
||||
CHROMA_AUTH_PROVIDER: ${CHROMA_AUTH_PROVIDER:-chromadb.auth.token_authn.TokenAuthClientProvider}
|
||||
CHROMA_AUTH_CREDENTIALS: ${CHROMA_AUTH_CREDENTIALS:-}
|
||||
ELASTICSEARCH_HOST: ${ELASTICSEARCH_HOST:-127.0.0.1}
|
||||
ELASTICSEARCH_PORT: ${ELASTICSEARCH_PORT:-9200}
|
||||
ELASTICSEARCH_USERNAME: ${ELASTICSEARCH_USERNAME:-elastic}
|
||||
ELASTICSEARCH_PASSWORD: ${ELASTICSEARCH_PASSWORD:-elastic}
|
||||
# AnalyticDB configuration
|
||||
ANALYTICDB_KEY_ID: ${ANALYTICDB_KEY_ID:-}
|
||||
ANALYTICDB_KEY_SECRET: ${ANALYTICDB_KEY_SECRET:-}
|
||||
|
@ -595,6 +599,27 @@ services:
|
|||
ports:
|
||||
- "${MYSCALE_PORT:-8123}:${MYSCALE_PORT:-8123}"
|
||||
|
||||
elasticsearch:
|
||||
image: docker.elastic.co/elasticsearch/elasticsearch:8.14.3
|
||||
container_name: elasticsearch
|
||||
profiles:
|
||||
- elasticsearch
|
||||
restart: always
|
||||
environment:
|
||||
- "ELASTIC_PASSWORD=${ELASTICSEARCH_USERNAME:-elastic}"
|
||||
- "cluster.name=dify-es-cluster"
|
||||
- "node.name=dify-es0"
|
||||
- "discovery.type=single-node"
|
||||
- "xpack.security.http.ssl.enabled=false"
|
||||
- "xpack.license.self_generated.type=trial"
|
||||
ports:
|
||||
- "${ELASTICSEARCH_PORT:-9200}:${ELASTICSEARCH_PORT:-9200}"
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-s", "http://localhost:9200/_cluster/health?pretty"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 50
|
||||
|
||||
# unstructured .
|
||||
# (if used, you need to set ETL_TYPE to Unstructured in the api & worker service.)
|
||||
unstructured:
|
||||
|
|
9372
web/yarn.lock
9372
web/yarn.lock
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user