Compare commits

...

45 Commits

Author SHA1 Message Date
-LAN-
72c1b7d1c2 feat(llm-panel): refine variable filtering logic
Introduce `filterJinjia2InputVar` to enhance variable filtering, specifically excluding `arrayFile` types from Jinja2 input variables. This adjustment improves the management of variable types, aligning with expected input capacities and ensuring more reliable configurations. Additionally, support for file variables is enabled in relevant components, broadening functionality and user options.
2024-11-15 01:13:51 +08:00
-LAN-
157aee8878 refactor(core): decouple LLMNode prompt handling
Moved prompt handling functions out of the `LLMNode` class to improve modularity and separation of concerns. This refactor allows better reuse and testing of prompt-related functions. Adjusted existing logic to fetch queries and handle context and memory configurations more effectively. Updated tests to align with the new structure and ensure continued functionality.
2024-11-15 01:13:51 +08:00
-LAN-
3439c4b12a refactor(node.py): streamline template rendering
Removed the `_render_basic_message` function and integrated its logic directly into the `LLMNode` class. This reduces redundancy and simplifies the handling of message templates by utilizing `convert_template` more directly. This change enhances code readability and maintainability.
2024-11-15 01:13:51 +08:00
-LAN-
bc331b9a41 feat(config-prompt): add support for file variables
Extended the `ConfigPromptItem` component to support file variables by including the `isSupportFileVar` prop. Updated `useConfig` hooks to accept `arrayFile` variable types for both input and memory prompt filtering. This enhancement allows handling of file data types seamlessly, improving flexibility in configuring prompts.
2024-11-15 01:13:51 +08:00
-LAN-
c3b5d1994a fix(file-manager): enforce file extension presence
Added a check to ensure that files have an extension before processing to avoid potential errors. Updated unit tests to reflect this requirement by including extensions in test data. This prevents exceptions from being raised due to missing file extension information.
2024-11-15 01:13:51 +08:00
-LAN-
87137ad97a feat: add support for document, video, and audio content
Expanded the system to handle document types across different modules and introduced video and audio content handling in model features. Adjusted the prompt message logic to conditionally process content based on available features, enhancing flexibility in media processing. Added comprehensive error handling in `LLMNode` for better runtime resilience. Updated YAML configuration and unit tests to reflect these changes.
2024-11-15 01:13:51 +08:00
-LAN-
14205a7756 fix: ensure workflow run persistence before refresh
Adds the workflow run object to the database session to guarantee it is persisted prior to refreshing its state. This change resolves potential issues with data consistency and integrity when the workflow run is accessed after operations. References issue #123 for more context.
2024-11-15 01:13:51 +08:00
-LAN-
e1ccb1f8d7 fix(file-uploader): resolve file extension logic order
Rearranged the logic in `getFileExtension` to first check for a valid `fileName` before considering `fileMimetype` or `isRemote`. This change ensures that the function prioritizes extracting extensions from file names directly, improving accuracy and handling edge cases more effectively. This update may prevent incorrect file extensions when mimetype is prioritized incorrectly.

Resolves #123.
2024-11-15 01:13:51 +08:00
-LAN-
2111196213 feat: enhance image handling in prompt processing
Updated image processing logic to check for model support of vision features, preventing errors when handling images with models that do not support them. Added a test scenario to validate behavior when vision features are absent. This ensures robust image handling and avoids unexpected behavior during image-related prompts.
2024-11-15 01:13:51 +08:00
-LAN-
eef3a3c7a9 fix(node): handle empty text segments gracefully
Ensure that messages are only created from non-empty text segments, preventing potential issues with empty content.

test: add scenario for file variable handling

Introduce a test case for scenarios involving prompt templates with file variables, particularly images, to improve reliability and test coverage. Updated `LLMNodeTestScenario` to use `Sequence` and `Mapping` for more flexible configurations.

Closes #123, relates to #456.
2024-11-15 01:13:51 +08:00
-LAN-
d03e7e0a8f feat(tests): refactor LLMNode tests for clarity
Refactor test scenarios in LLMNode unit tests by introducing a new `LLMNodeTestScenario` class to enhance readability and consistency. This change simplifies the test case management by encapsulating scenario data and reduces redundancy in specifying test configurations. Improves test clarity and maintainability by using a structured approach.
2024-11-15 01:13:51 +08:00
-LAN-
37ed7b3e39 refactor(tests): streamline LLM node prompt message tests
Refactored LLM node tests to enhance clarity and maintainability by creating test scenarios for different file input combinations. This restructuring replaces repetitive code with a more concise approach, improving test coverage and readability.

No functional code changes were made.

References: #123, #456
2024-11-15 01:13:51 +08:00
-LAN-
987105bb27 Simplify test setup in LLM node tests
Replaced redundant variables in test setup to streamline and align usage of fake data, enhancing readability and maintainability. Adjusted image URL variables to utilize consistent references, ensuring uniformity across test configurations. Also, corrected context variable naming for clarity. No functional impact, purely a refactor for code clarity.
2024-11-15 01:13:51 +08:00
-LAN-
600d111e8f feat(llm_node): allow to use image file directly in the prompt. 2024-11-15 01:13:51 +08:00
-LAN-
2a58cc59c0 Remove unnecessary data from log and text properties
Updated the log and text properties in segments to return
empty strings instead of the segment value. This change
prevents potential leakage of sensitive data by ensuring
only non-sensitive information is logged or transformed
into text. Addresses potential security and privacy concerns.
2024-11-15 01:13:51 +08:00
-LAN-
9d3e688e38 refactor(model_manager): update parameter type for flexibility
- Changed 'prompt_messages' parameter from list to Sequence for broader input type compatibility.
2024-11-15 01:13:51 +08:00
-LAN-
97beb1c0c7 refactor(memory): use Sequence instead of list for prompt messages
- Improved flexibility by using Sequence instead of list, allowing for broader compatibility with different types of sequences.
- Helps future-proof the method signature by leveraging the more generic Sequence type.
2024-11-15 01:13:51 +08:00
-LAN-
f16e6e06cd fix(dependencies): update Faker version constraint
- Changed the Faker version from caret constraint to tilde constraint for compatibility.
- Updated poetry.lock for changes in pyproject.toml content.
2024-11-15 01:13:51 +08:00
-LAN-
0b587deef4 chore(config): remove unnecessary 'frozen' parameter for test
- Simplified app configuration by removing the 'frozen' parameter since it is no longer needed.
- Ensures more flexible handling of config attributes.
2024-11-15 01:13:51 +08:00
-LAN-
2cb119addf refactor(model_runtime): use Sequence for content in PromptMessage
- Replaced list with Sequence for more flexible content type.
- Improved type consistency by importing from collections.abc.
2024-11-15 01:13:51 +08:00
-LAN-
8ddfba60a5 refactor(prompt): enhance type flexibility for prompt messages
- Changed input type from list to Sequence for prompt messages to allow more flexible input types.
- Improved compatibility with functions expecting different iterable types.
2024-11-15 01:13:51 +08:00
-LAN-
1c143c89a8 fix(tests): update Azure Rerank Model usage and clean imports 2024-11-15 01:13:51 +08:00
-LAN-
69fd050914 feat(errors): add new error classes for unsupported prompt types and memory role prefix requirements 2024-11-15 01:13:51 +08:00
-LAN-
dac51ef381 refactor: update jinja2_variables and prompt_config to use Sequence and add validators for None handling 2024-11-15 01:13:51 +08:00
-LAN-
740ff15cab refactor: update stop parameter type to use Sequence instead of list 2024-11-15 01:13:51 +08:00
-LAN-
27dff4c980 refactor(converter): simplify model credentials validation logic 2024-11-15 01:13:51 +08:00
-LAN-
9bd0320e4b chore(deps): add faker 2024-11-15 01:13:51 +08:00
jarvis2f
5ff02b469f
fix:position error when creating segments (#10706)
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
2024-11-14 21:25:15 +08:00
Bowen Liang
44f57ad9a8
chore: Bump Alpine Linux to 3.20 in web dockerfile (#10671) 2024-11-14 20:57:01 +08:00
yihong
94fd6f6901
fix: typo in test (#10707)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2024-11-14 20:54:13 +08:00
SiliconFlow, Inc
e61242a337
feat: add vlm models from siliconflow (#10704) 2024-11-14 20:53:35 +08:00
yihong
722964667f
fix: non utf8 code decode close #10691 (#10698)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2024-11-14 17:29:49 +08:00
Xiao Ley
fbb9c1c249
fixed the Base URL usage issue in Podcast Generator tool verification (#10697) 2024-11-14 17:24:42 +08:00
非法操作
15f341b655
feat: add the audio tool (#10695) 2024-11-14 16:37:15 +08:00
crazywoola
b358490607
chore: update issue template (#10693) 2024-11-14 16:12:27 +08:00
crazywoola
f9e4196fd5
Update pull_request_template.md (#10692) 2024-11-14 15:56:37 +08:00
crazywoola
751525802d
feat: update pr template (#10690) 2024-11-14 15:52:15 +08:00
lz
2abacd2a2d
export configuration 'CODE_EXECUTION_TIMEOUT' to .env (#10688)
Co-authored-by: liuzhu <liuzhu@fridaycloud.com.cn>
2024-11-14 15:34:34 +08:00
Nam Vu
a3155e0613
Update expat version (#10686) 2024-11-14 15:30:55 +08:00
Jyong
70b9e4caf5
check dataset is none (#10682) 2024-11-14 14:07:19 +08:00
orangeclk
317ae9233e
feat: add json response format for siliconflow models (#10657)
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
2024-11-14 08:58:22 +08:00
xiandan-erizo
5b8f03cd9d
add abab7-chat-preview model (#10654)
Some checks failed
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
Mark stale issues and pull requests / stale (push) Has been cancelled
Co-authored-by: xiandan-erizo <xiandan-erizo@outlook.com>
2024-11-13 19:30:42 +08:00
Kalo Chin
2a4783307a
Feat(tool): fal ai flux image generation (#10606) 2024-11-13 17:41:58 +08:00
非法操作
bddecba9ed
fix: mp3 file upload not work (#10650) 2024-11-13 17:37:29 +08:00
jiangbo721
931e76e3d1
fix: remove unused queue generation (#10532)
Co-authored-by: 刘江波 <jiangbo721@163.com>
2024-11-13 15:52:52 +08:00
93 changed files with 2930 additions and 271 deletions

View File

@ -1,34 +1,32 @@
# Checklist:
# Summary
Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.
> [!Tip]
> Close issue syntax: `Fixes #<issue number>` or `Resolves #<issue number>`, see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) for more details.
# Screenshots
<table>
<tr>
<td>Before: </td>
<td>After: </td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</table>
# Checklist
> [!IMPORTANT]
> Please review the checklist below before submitting your pull request.
- [ ] Please open an issue before creating a PR or link to an existing issue
- [ ] I have performed a self-review of my own code
- [ ] I have commented my code, particularly in hard-to-understand areas
- [ ] I ran `dev/reformat`(backend) and `cd web && npx lint-staged`(frontend) to appease the lint gods
# Description
Describe the big picture of your changes here to communicate to the maintainers why we should accept this pull request. If it fixes a bug or resolves a feature request, be sure to link to that issue. Close issue syntax: `Fixes #<issue number>`, see [documentation](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword) for more details.
Fixes
## Type of Change
- [ ] Bug fix (non-breaking change which fixes an issue)
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
- [ ] This change requires a documentation update, included: [Dify Document](https://github.com/langgenius/dify-docs)
- [ ] Improvement, including but not limited to code refactoring, performance optimization, and UI/UX improvement
- [ ] Dependency upgrade
# Testing Instructions
Please describe the tests that you ran to verify your changes. Provide instructions so we can reproduce. Please also list any relevant details for your test configuration
- [ ] Test A
- [ ] Test B
- [x] I understand that this PR may be closed in case there was no previous discussion or issues. (This doesn't apply to typos!)
- [x] I've added a test for each change that was introduced, and I tried as much as possible to make a single atomic change.
- [x] I've updated the documentation accordingly.
- [x] I ran `dev/reformat`(backend) and `cd web && npx lint-staged`(frontend) to appease the lint gods

View File

@ -55,7 +55,7 @@ RUN apt-get update \
&& echo "deb http://deb.debian.org/debian testing main" > /etc/apt/sources.list \
&& apt-get update \
# For Security
&& apt-get install -y --no-install-recommends expat=2.6.3-2 libldap-2.5-0=2.5.18+dfsg-3+b1 perl=5.40.0-7 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
&& apt-get install -y --no-install-recommends expat=2.6.4-1 libldap-2.5-0=2.5.18+dfsg-3+b1 perl=5.40.0-7 libsqlite3-0=3.46.1-1 zlib1g=1:1.3.dfsg+really1.3.1-1+b1 \
# install a chinese font to support the use of tools like matplotlib
&& apt-get install -y fonts-noto-cjk \
&& apt-get autoremove -y \

View File

@ -27,7 +27,6 @@ class DifyConfig(
# read from dotenv format config file
env_file=".env",
env_file_encoding="utf-8",
frozen=True,
# ignore extra attributes
extra="ignore",
)

View File

@ -11,7 +11,7 @@ from core.provider_manager import ProviderManager
class ModelConfigConverter:
@classmethod
def convert(cls, app_config: EasyUIBasedAppConfig, skip_check: bool = False) -> ModelConfigWithCredentialsEntity:
def convert(cls, app_config: EasyUIBasedAppConfig) -> ModelConfigWithCredentialsEntity:
"""
Convert app model config dict to entity.
:param app_config: app config
@ -38,27 +38,23 @@ class ModelConfigConverter:
)
if model_credentials is None:
if not skip_check:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
else:
model_credentials = {}
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
if not skip_check:
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = model_config.parameters
@ -76,7 +72,7 @@ class ModelConfigConverter:
model_schema = model_type_instance.get_model_schema(model_config.model, model_credentials)
if not skip_check and not model_schema:
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
return ModelConfigWithCredentialsEntity(

View File

@ -217,6 +217,7 @@ class WorkflowCycleManage:
).total_seconds()
db.session.commit()
db.session.add(workflow_run)
db.session.refresh(workflow_run)
db.session.close()

View File

@ -74,6 +74,8 @@ def to_prompt_message_content(
data = _to_url(f)
else:
data = _to_base64_data_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
return VideoPromptMessageContent(data=data, format=f.extension.lstrip("."))
case _:
raise ValueError("file type f.type is not supported")

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
@ -27,7 +28,7 @@ class TokenBufferMemory:
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> list[PromptMessage]:
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: max token limit

View File

@ -100,10 +100,10 @@ class ModelInstance:
def invoke_llm(
self,
prompt_messages: list[PromptMessage],
prompt_messages: Sequence[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -1,4 +1,5 @@
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Optional
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
@ -31,7 +32,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -60,7 +61,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
):
@ -90,7 +91,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -120,7 +121,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:

View File

@ -1,4 +1,5 @@
from abc import ABC
from collections.abc import Sequence
from enum import Enum
from typing import Optional
@ -57,6 +58,7 @@ class PromptMessageContentType(Enum):
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
DOCUMENT = "document"
class PromptMessageContent(BaseModel):
@ -107,7 +109,7 @@ class PromptMessage(ABC, BaseModel):
"""
role: PromptMessageRole
content: Optional[str | list[PromptMessageContent]] = None
content: Optional[str | Sequence[PromptMessageContent]] = None
name: Optional[str] = None
def is_empty(self) -> bool:

View File

@ -87,6 +87,9 @@ class ModelFeature(Enum):
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
DOCUMENT = "document"
VIDEO = "video"
AUDIO = "audio"
class DefaultParameterName(str, Enum):

View File

@ -2,7 +2,7 @@ import logging
import re
import time
from abc import abstractmethod
from collections.abc import Generator, Mapping
from collections.abc import Generator, Mapping, Sequence
from typing import Optional, Union
from pydantic import ConfigDict
@ -48,7 +48,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -169,7 +169,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -212,7 +212,7 @@ if you are not sure about the structure.
)
model_parameters.pop("response_format")
stop = stop or []
stop = list(stop) if stop is not None else []
stop.extend(["\n```", "```\n"])
block_prompts = block_prompts.replace("{{block}}", code_block)
@ -408,7 +408,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -479,7 +479,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
@ -601,7 +601,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -647,7 +647,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -694,7 +694,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -742,7 +742,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -0,0 +1,46 @@
model: abab7-chat-preview
label:
en_US: Abab7-chat-preview
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 245760
parameter_rules:
- name: temperature
use_template: temperature
min: 0.01
max: 1
default: 0.1
- name: top_p
use_template: top_p
min: 0.01
max: 1
default: 0.95
- name: max_tokens
use_template: max_tokens
required: true
default: 2048
min: 1
max: 245760
- name: mask_sensitive_info
type: boolean
default: true
label:
zh_Hans: 隐私保护
en_US: Moderate
help:
zh_Hans: 对输出中易涉及隐私问题的文本信息进行打码目前包括但不限于邮箱、域名、链接、证件号、家庭住址等默认true即开启打码
en_US: Mask the sensitive info of the generated content, such as email/domain/link/address/phone/id..
- name: presence_penalty
use_template: presence_penalty
- name: frequency_penalty
use_template: frequency_penalty
pricing:
input: '0.1'
output: '0.1'
unit: '0.001'
currency: RMB

View File

@ -34,6 +34,7 @@ from core.model_runtime.model_providers.minimax.llm.types import MinimaxMessage
class MinimaxLargeLanguageModel(LargeLanguageModel):
model_apis = {
"abab7-chat-preview": MinimaxChatCompletionPro,
"abab6.5s-chat": MinimaxChatCompletionPro,
"abab6.5-chat": MinimaxChatCompletionPro,
"abab6-chat": MinimaxChatCompletionPro,

View File

@ -8,6 +8,7 @@ features:
- agent-thought
- stream-tool-call
- vision
- audio
model_properties:
mode: chat
context_size: 128000

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-26B
label:
en_US: OpenGVLab/InternVL2-26B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/OpenGVLab/InternVL2-8B
label:
en_US: Pro/OpenGVLab/InternVL2-8B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -1,16 +1,18 @@
- Tencent/Hunyuan-A52B-Instruct
- Qwen/Qwen2.5-72B-Instruct
- Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-Coder-32B-Instruct
- Qwen/Qwen2.5-Coder-7B-Instruct
- Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2-72B-Instruct
- Qwen/Qwen2-57B-A14B-Instruct
- Qwen/Qwen2-7B-Instruct
- Qwen/Qwen2-VL-72B-Instruct
- Qwen/Qwen2-1.5B-Instruct
- Pro/Qwen/Qwen2-VL-7B-Instruct
- OpenGVLab/InternVL2-Llama3-76B
- OpenGVLab/InternVL2-26B
- Pro/OpenGVLab/InternVL2-8B
- deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V2-Chat
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- THUDM/glm-4-9b-chat
- 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K
@ -20,9 +22,6 @@
- meta-llama/Meta-Llama-3.1-405B-Instruct
- meta-llama/Meta-Llama-3.1-70B-Instruct
- meta-llama/Meta-Llama-3.1-8B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-8B-Instruct
- google/gemma-2-27b-it
- google/gemma-2-9b-it
- mistralai/Mistral-7B-Instruct-v0.2
- mistralai/Mixtral-8x7B-Instruct-v0.1
- deepseek-ai/DeepSeek-V2-Chat

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -4,6 +4,8 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 32768
@ -32,6 +34,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.33'
output: '1.33'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: Tencent/Hunyuan-A52B-Instruct
label:
en_US: Tencent/Hunyuan-A52B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1'
output: '1'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-Llama3-76B
label:
en_US: OpenGVLab/InternVL2-Llama3-76B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -29,6 +29,9 @@ class SiliconflowLargeLanguageModel(OAIAPICompatLargeLanguageModel):
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)
# {"response_format": "json_object"} need convert to {"response_format": {"type": "json_object"}}
if "response_format" in model_parameters:
model_parameters["response_format"] = {"type": model_parameters.get("response_format")}
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)
def validate_credentials(self, model: str, credentials: dict) -> None:

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'

View File

@ -6,7 +6,7 @@ features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -37,3 +37,4 @@ pricing:
output: '1.26'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0'
unit: '0.000001'
currency: RMB
deprecated: true

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2-VL-72B-Instruct
label:
en_US: Qwen/Qwen2-VL-72B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/Qwen/Qwen2-VL-7B-Instruct
label:
en_US: Pro/Qwen/Qwen2-VL-7B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0.7'
output: '0.7'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -32,6 +32,18 @@ parameter_rules:
required: false
- name: frequency_penalty
use_template: frequency_penalty
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2.5-Coder-32B-Instruct
label:
en_US: Qwen/Qwen2.5-Coder-32B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 8192
min: 1
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'
unit: '0.000001'
currency: RMB

View File

@ -66,7 +66,17 @@ parameter_rules:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '0'
output: '0'

View File

@ -66,7 +66,17 @@ parameter_rules:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
use_template: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '4.13'
output: '4.13'

View File

@ -0,0 +1,5 @@
model: FunAudioLLM/SenseVoiceSmall
model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: mp3,wav

View File

@ -3,3 +3,4 @@ model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: mp3,wav
deprecated: true

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import cast
from core.model_runtime.entities import (
@ -14,7 +15,7 @@ from core.prompt.simple_prompt_transform import ModelMode
class PromptMessageUtil:
@staticmethod
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: list[PromptMessage]) -> list[dict]:
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: Sequence[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param model_mode: model mode

View File

@ -78,3 +78,4 @@
- regex
- trello
- vanna
- fal

View File

@ -0,0 +1,3 @@
<svg xmlns="http://www.w3.org/2000/svg" width="200" height="200" viewBox="0 0 200 200" fill="none">
<path d="M167.358 102.395C167.358 117.174 157.246 129.18 144.61 131.027H137.861C125.225 129.18 115.113 117.174 115.113 102.395H100.792C100.792 123.637 115.118 142.106 133.653 145.801V164.276H147.139V145.801C165.674 142.106 180 124.558 180 102.4H167.358V102.395ZM154.717 62.677C154.717 53.4397 147.979 46.9765 140.396 46.9765C138.523 46.9446 136.663 47.3273 134.924 48.1024C133.185 48.8775 131.603 50.0294 130.27 51.4909C128.936 52.9524 127.878 54.6943 127.157 56.6148C126.436 58.5354 126.066 60.5962 126.07 62.677V78.3775H154.717V70.4478V62.677ZM126.07 102.395C126.07 111.632 132.813 118.095 140.396 118.095C142.269 118.127 144.13 117.744 145.868 116.969C147.607 116.194 149.189 115.042 150.523 113.581C151.856 112.119 152.914 110.377 153.635 108.457C154.356 106.536 154.726 104.475 154.722 102.395V86.694H126.07V102.395ZM92.1297 45.8938L70.4796 21.7595L69.4235 20.5865L59.604 20L68.3674 20.5865L67.3113 21.7654L64.1429 25.2961L63.6149 25.8826L64.1429 27.0614L66.2552 29.4133L77.8723 42.3631H54.1099C35.1 43.5361 20.3146 61.1896 20.3146 81.7874V83.5527H28.2354V81.7932C28.2354 65.8992 39.8525 52.3628 54.1099 51.1899H77.8723L66.2552 64.1338L64.671 65.8992L64.1429 67.0722L63.6149 67.6645L64.1429 68.251L68.3674 72.9606L68.8954 73.5471L69.4235 72.9606L74.1759 67.6645L92.1297 47.6591L92.6578 47.0727L92.1297 45.8938ZM20 95.8496V118.213H30.033V107.034H50.099V168.821H40.066V180H70.165V168.821H60.132V107.034H80.198V118.213H90.231V95.8496H20Z" fill="#FF0099"/>
</svg>

After

Width:  |  Height:  |  Size: 1.5 KiB

View File

@ -0,0 +1,6 @@
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class AudioToolProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
pass

View File

@ -0,0 +1,11 @@
identity:
author: hjlarry
name: audio
label:
en_US: Audio
description:
en_US: A tool for tts and asr.
zh_Hans: 一个用于文本转语音和语音转文本的工具。
icon: icon.svg
tags:
- utilities

View File

@ -0,0 +1,70 @@
import io
from typing import Any
from core.file.enums import FileType
from core.file.file_manager import download
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
from core.tools.tool.builtin_tool import BuiltinTool
from services.model_provider_service import ModelProviderService
class ASRTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> list[ToolInvokeMessage]:
file = tool_parameters.get("audio_file")
if file.type != FileType.AUDIO:
return [self.create_text_message("not a valid audio file")]
audio_binary = io.BytesIO(download(file))
audio_binary.name = "temp.mp3"
provider, model = tool_parameters.get("model").split("#")
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.runtime.tenant_id,
provider=provider,
model_type=ModelType.SPEECH2TEXT,
model=model,
)
text = model_instance.invoke_speech2text(
file=audio_binary,
user=user_id,
)
return [self.create_text_message(text)]
def get_available_models(self) -> list[tuple[str, str]]:
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_model_type(
tenant_id=self.runtime.tenant_id, model_type="speech2text"
)
items = []
for provider_model in models:
provider = provider_model.provider
for model in provider_model.models:
items.append((provider, model.model))
return items
def get_runtime_parameters(self) -> list[ToolParameter]:
parameters = []
options = []
for provider, model in self.get_available_models():
option = ToolParameterOption(value=f"{provider}#{model}", label=I18nObject(en_US=f"{model}({provider})"))
options.append(option)
parameters.append(
ToolParameter(
name="model",
label=I18nObject(en_US="Model", zh_Hans="Model"),
human_description=I18nObject(
en_US="All available ASR models",
zh_Hans="所有可用的 ASR 模型",
),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=True,
default=options[0].value,
options=options,
)
)
return parameters

View File

@ -0,0 +1,22 @@
identity:
name: asr
author: hjlarry
label:
en_US: Speech To Text
description:
human:
en_US: Convert audio file to text.
zh_Hans: 将音频文件转换为文本。
llm: Convert audio file to text.
parameters:
- name: audio_file
type: file
required: true
label:
en_US: Audio File
zh_Hans: 音频文件
human_description:
en_US: The audio file to be converted.
zh_Hans: 要转换的音频文件。
llm_description: The audio file to be converted.
form: llm

View File

@ -0,0 +1,90 @@
import io
from typing import Any
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter, ToolParameterOption
from core.tools.tool.builtin_tool import BuiltinTool
from services.model_provider_service import ModelProviderService
class TTSTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> list[ToolInvokeMessage]:
provider, model = tool_parameters.get("model").split("#")
voice = tool_parameters.get(f"voice#{provider}#{model}")
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.runtime.tenant_id,
provider=provider,
model_type=ModelType.TTS,
model=model,
)
tts = model_instance.invoke_tts(
content_text=tool_parameters.get("text"),
user=user_id,
tenant_id=self.runtime.tenant_id,
voice=voice,
)
buffer = io.BytesIO()
for chunk in tts:
buffer.write(chunk)
wav_bytes = buffer.getvalue()
return [
self.create_text_message("Audio generated successfully"),
self.create_blob_message(
blob=wav_bytes,
meta={"mime_type": "audio/x-wav"},
save_as=self.VariableKey.AUDIO,
),
]
def get_available_models(self) -> list[tuple[str, str, list[Any]]]:
model_provider_service = ModelProviderService()
models = model_provider_service.get_models_by_model_type(tenant_id=self.runtime.tenant_id, model_type="tts")
items = []
for provider_model in models:
provider = provider_model.provider
for model in provider_model.models:
voices = model.model_properties.get(ModelPropertyKey.VOICES, [])
items.append((provider, model.model, voices))
return items
def get_runtime_parameters(self) -> list[ToolParameter]:
parameters = []
options = []
for provider, model, voices in self.get_available_models():
option = ToolParameterOption(value=f"{provider}#{model}", label=I18nObject(en_US=f"{model}({provider})"))
options.append(option)
parameters.append(
ToolParameter(
name=f"voice#{provider}#{model}",
label=I18nObject(en_US=f"Voice of {model}({provider})"),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
options=[
ToolParameterOption(value=voice.get("mode"), label=I18nObject(en_US=voice.get("name")))
for voice in voices
],
)
)
parameters.insert(
0,
ToolParameter(
name="model",
label=I18nObject(en_US="Model", zh_Hans="Model"),
human_description=I18nObject(
en_US="All available TTS models",
zh_Hans="所有可用的 TTS 模型",
),
type=ToolParameter.ToolParameterType.SELECT,
form=ToolParameter.ToolParameterForm.FORM,
required=True,
default=options[0].value,
options=options,
),
)
return parameters

View File

@ -0,0 +1,22 @@
identity:
name: tts
author: hjlarry
label:
en_US: Text To Speech
description:
human:
en_US: Convert text to audio file.
zh_Hans: 将文本转换为音频文件。
llm: Convert text to audio file.
parameters:
- name: text
type: string
required: true
label:
en_US: Text
zh_Hans: 文本
human_description:
en_US: The text to be converted.
zh_Hans: 要转换的文本。
llm_description: The text to be converted.
form: llm

View File

@ -0,0 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="32" height="32">
<path d="M0 0 C3.96 0 7.92 0 12 0 C12.4125 0.928125 12.825 1.85625 13.25 2.8125 C15.56104487 7.02190315 17.49701732 8.49900577 22 10 C22 13.96 22 17.92 22 22 C21.071875 22.4125 20.14375 22.825 19.1875 23.25 C14.97809685 25.56104487 13.50099423 27.49701732 12 32 C8.04 32 4.08 32 0 32 C-0.4125 31.071875 -0.825 30.14375 -1.25 29.1875 C-3.56104487 24.97809685 -5.49701732 23.50099423 -10 22 C-10 18.04 -10 14.08 -10 10 C-9.071875 9.5875 -8.14375 9.175 -7.1875 8.75 C-2.97809685 6.43895513 -1.50099423 4.50298268 0 0 Z M-2 11 C-3.42662219 13.85324437 -3.31033868 15.83454549 -3 19 C-1.20006226 21.69990662 0.083773 23.5418865 3 25 C7.1364408 25.56406011 8.76045933 25.14638597 12.375 22.9375 C15.26054626 20.20817124 15.26054626 20.20817124 15.6875 16.5625 C14.76325283 11.77321919 13.68514918 10.2147046 10 7 C4.54838272 6.02649691 1.87056683 7.12943317 -2 11 Z " fill="#EC0648" transform="translate(10,0)"/>
</svg>

After

Width:  |  Height:  |  Size: 1.0 KiB

View File

@ -0,0 +1,20 @@
import requests
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class FalProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict) -> None:
url = "https://fal.run/fal-ai/flux/dev"
headers = {
"Authorization": f"Key {credentials.get('fal_api_key')}",
"Content-Type": "application/json",
}
data = {"prompt": "Cat"}
response = requests.post(url, json=data, headers=headers)
if response.status_code == 401:
raise ToolProviderCredentialValidationError("FAL API key is invalid")
elif response.status_code != 200:
raise ToolProviderCredentialValidationError(f"FAL API key validation failed: {response.text}")

View File

@ -0,0 +1,21 @@
identity:
author: Kalo Chin
name: fal
label:
en_US: FAL
zh_CN: FAL
description:
en_US: The image generation API provided by FAL.
zh_CN: FAL 提供的图像生成 API。
icon: icon.svg
tags:
- image
credentials_for_provider:
fal_api_key:
type: secret-input
required: true
label:
en_US: FAL API Key
placeholder:
en_US: Please input your FAL API key
url: https://fal.ai/dashboard/keys

View File

@ -0,0 +1,46 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux11ProTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"seed": tool_parameters.get("seed"),
"sync_mode": tool_parameters.get("sync_mode", False),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"safety_tolerance": tool_parameters.get("safety_tolerance", "2"),
}
url = "https://fal.run/fal-ai/flux-pro/v1.1"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,147 @@
identity:
name: flux_1_1_pro
author: Kalo Chin
label:
en_US: FLUX 1.1 [pro]
zh_Hans: FLUX 1.1 [pro]
icon: icon.svg
description:
human:
en_US: FLUX 1.1 [pro] is an enhanced version of FLUX.1 [pro], improved image generation capabilities, delivering superior composition, detail, and artistic fidelity compared to its predecessor.
zh_Hans: FLUX 1.1 [pro] 是 FLUX.1 [pro] 的增强版,改进了图像生成能力,与其前身相比,提供了更出色的构图、细节和艺术保真度。
llm: This tool generates images from prompts using FAL's FLUX 1.1 [pro] model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图片的文字提示词。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 方形高清
- value: square
label:
en_US: Square
zh_Hans: 方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图片大小
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图片数量。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: "2"
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: The safety tolerance level for the generated image. 1 being the most strict and 6 being the most permissive.
zh_Hans: 生成图像的安全容忍级别1 为最严格6 为最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以产生相似的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后再返回响应。
这将增加函数的延迟,但可以让您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux11ProUltraTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"seed": tool_parameters.get("seed"),
"sync_mode": tool_parameters.get("sync_mode", False),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"safety_tolerance": str(tool_parameters.get("safety_tolerance", "2")),
"aspect_ratio": tool_parameters.get("aspect_ratio", "16:9"),
"raw": tool_parameters.get("raw", False),
}
url = "https://fal.run/fal-ai/flux-pro/v1.1-ultra"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,162 @@
identity:
name: flux_1_1_pro_ultra
author: Kalo Chin
label:
en_US: FLUX 1.1 [pro] ultra
zh_Hans: FLUX 1.1 [pro] ultra
icon: icon.svg
description:
human:
en_US: FLUX 1.1 [pro] ultra is the newest version of FLUX 1.1 [pro], maintaining professional-grade image quality while delivering up to 2K resolution with improved photo realism.
zh_Hans: FLUX 1.1 [pro] ultra 是 FLUX 1.1 [pro] 的最新版本,保持了专业级的图像质量,同时以改进的照片真实感提供高达 2K 的分辨率。
llm: This tool generates images from prompts using FAL's FLUX 1.1 [pro] ultra model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图像的文本提示。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: aspect_ratio
type: select
required: false
options:
- value: '21:9'
label:
en_US: '21:9'
zh_Hans: '21:9'
- value: '16:9'
label:
en_US: '16:9'
zh_Hans: '16:9'
- value: '4:3'
label:
en_US: '4:3'
zh_Hans: '4:3'
- value: '1:1'
label:
en_US: '1:1'
zh_Hans: '1:1'
- value: '3:4'
label:
en_US: '3:4'
zh_Hans: '3:4'
- value: '9:16'
label:
en_US: '9:16'
zh_Hans: '9:16'
- value: '9:21'
label:
en_US: '9:21'
zh_Hans: '9:21'
default: '16:9'
label:
en_US: Aspect Ratio
zh_Hans: 纵横比
human_description:
en_US: The aspect ratio of the generated image.
zh_Hans: 生成图像的宽高比。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图像数量。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: '2'
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: The safety tolerance level for the generated image. 1 being the most strict and 6 being the most permissive.
zh_Hans: 生成图像的安全容忍级别1 为最严格6 为最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以生成相似的图像。
form: form
- name: raw
type: boolean
required: false
default: false
label:
en_US: Raw Mode
zh_Hans: 原始模式
human_description:
en_US: Generate less processed, more natural-looking images.
zh_Hans: 生成较少处理、更自然的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后才返回响应。
这将增加延迟,但允许您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux1DevTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes from the prompt which may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"num_inference_steps": tool_parameters.get("num_inference_steps", 28),
"guidance_scale": tool_parameters.get("guidance_scale", 3.5),
"seed": tool_parameters.get("seed"),
"num_images": tool_parameters.get("num_images", 1),
"enable_safety_checker": tool_parameters.get("enable_safety_checker", True),
"sync_mode": tool_parameters.get("sync_mode", False),
}
url = "https://fal.run/fal-ai/flux/dev"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,137 @@
identity:
name: flux_1_dev
author: Kalo Chin
label:
en_US: FLUX.1 [dev]
zh_Hans: FLUX.1 [dev]
icon: icon.svg
description:
human:
en_US: FLUX.1 [dev] is a 12 billion parameter flow transformer that generates high-quality images from text. It is suitable for personal and commercial use.
zh_Hans: FLUX.1 [dev] 是一个拥有120亿参数的流动变换模型可以从文本生成高质量的图像。适用于个人和商业用途。
llm: This tool generates images from prompts using FAL's FLUX.1 [dev] model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图片的文字提示词。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 方形高清
- value: square
label:
en_US: Square
zh_Hans: 方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图片大小
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 4
label:
en_US: Number of Images
zh_Hans: 图片数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图片数量。
form: form
- name: num_inference_steps
type: number
required: false
default: 28
min: 1
max: 50
label:
en_US: Num Inference Steps
zh_Hans: 推理步数
human_description:
en_US: The number of inference steps to perform. More steps produce higher quality but take longer.
zh_Hans: 执行的推理步骤数量。更多的步骤可以产生更高质量的结果,但需要更长的时间。
form: form
- name: guidance_scale
type: number
required: false
default: 3.5
min: 0
max: 20
label:
en_US: Guidance Scale
zh_Hans: 指导强度
human_description:
en_US: How closely the model should follow the prompt.
zh_Hans: 模型对提示词的遵循程度。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示可以产生相似的图像。
form: form
- name: enable_safety_checker
type: boolean
required: false
default: true
label:
en_US: Enable Safety Checker
zh_Hans: 启用安全检查器
human_description:
en_US: Enable or disable the safety checker.
zh_Hans: 启用或禁用安全检查器。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后再返回响应。
这将增加函数的延迟,但可以让您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -0,0 +1,47 @@
from typing import Any, Union
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class Flux1ProNewTool(BuiltinTool):
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
headers = {
"Authorization": f"Key {self.runtime.credentials['fal_api_key']}",
"Content-Type": "application/json",
}
prompt = tool_parameters.get("prompt", "")
sanitized_prompt = prompt.replace("\\", "") # Remove backslashes that may cause errors
payload = {
"prompt": sanitized_prompt,
"image_size": tool_parameters.get("image_size", "landscape_4_3"),
"num_inference_steps": tool_parameters.get("num_inference_steps", 28),
"guidance_scale": tool_parameters.get("guidance_scale", 3.5),
"seed": tool_parameters.get("seed"),
"num_images": tool_parameters.get("num_images", 1),
"safety_tolerance": tool_parameters.get("safety_tolerance", "2"),
"sync_mode": tool_parameters.get("sync_mode", False),
}
url = "https://fal.run/fal-ai/flux-pro/new"
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
return self.create_text_message(f"Got Error Response: {response.text}")
res = response.json()
result = [self.create_json_message(res)]
for image_info in res.get("images", []):
image_url = image_info.get("url")
if image_url:
result.append(self.create_image_message(image=image_url, save_as=self.VariableKey.IMAGE.value))
return result

View File

@ -0,0 +1,164 @@
identity:
name: flux_1_pro_new
author: Kalo Chin
label:
en_US: FLUX.1 [pro] new
zh_Hans: FLUX.1 [pro] new
icon: icon.svg
description:
human:
en_US: FLUX.1 [pro] new is an accelerated version of FLUX.1 [pro], maintaining professional-grade image quality while delivering significantly faster generation speeds.
zh_Hans: FLUX.1 [pro] new 是 FLUX.1 [pro] 的加速版本,在保持专业级图像质量的同时,大大提高了生成速度。
llm: This tool generates images from prompts using FAL's FLUX.1 [pro] new model.
parameters:
- name: prompt
type: string
required: true
label:
en_US: Prompt
zh_Hans: 提示词
human_description:
en_US: The text prompt used to generate the image.
zh_Hans: 用于生成图像的文本提示。
llm_description: This prompt text will be used to generate the image.
form: llm
- name: image_size
type: select
required: false
options:
- value: square_hd
label:
en_US: Square HD
zh_Hans: 正方形高清
- value: square
label:
en_US: Square
zh_Hans: 正方形
- value: portrait_4_3
label:
en_US: Portrait 4:3
zh_Hans: 竖屏 4:3
- value: portrait_16_9
label:
en_US: Portrait 16:9
zh_Hans: 竖屏 16:9
- value: landscape_4_3
label:
en_US: Landscape 4:3
zh_Hans: 横屏 4:3
- value: landscape_16_9
label:
en_US: Landscape 16:9
zh_Hans: 横屏 16:9
default: landscape_4_3
label:
en_US: Image Size
zh_Hans: 图像尺寸
human_description:
en_US: The size of the generated image.
zh_Hans: 生成图像的尺寸。
form: form
- name: num_images
type: number
required: false
default: 1
min: 1
max: 1
label:
en_US: Number of Images
zh_Hans: 图像数量
human_description:
en_US: The number of images to generate.
zh_Hans: 要生成的图像数量。
form: form
- name: num_inference_steps
type: number
required: false
default: 28
min: 1
max: 50
label:
en_US: Num Inference Steps
zh_Hans: 推理步数
human_description:
en_US: The number of inference steps to perform. More steps produce higher quality but take longer.
zh_Hans: 执行的推理步数。步数越多,质量越高,但所需时间也更长。
form: form
- name: guidance_scale
type: number
required: false
default: 3.5
min: 0
max: 20
label:
en_US: Guidance Scale
zh_Hans: 指导强度
human_description:
en_US: How closely the model should follow the prompt.
zh_Hans: 模型对提示词的遵循程度。
form: form
- name: safety_tolerance
type: select
required: false
options:
- value: "1"
label:
en_US: "1 (Most strict)"
zh_Hans: "1最严格"
- value: "2"
label:
en_US: "2"
zh_Hans: "2"
- value: "3"
label:
en_US: "3"
zh_Hans: "3"
- value: "4"
label:
en_US: "4"
zh_Hans: "4"
- value: "5"
label:
en_US: "5"
zh_Hans: "5"
- value: "6"
label:
en_US: "6 (Most permissive)"
zh_Hans: "6最宽松"
default: "2"
label:
en_US: Safety Tolerance
zh_Hans: 安全容忍度
human_description:
en_US: >
The safety tolerance level for the generated image. 1 being the most strict and 5 being the most permissive.
zh_Hans: >
生成图像的安全容忍级别。1 是最严格6 是最宽松。
form: form
- name: seed
type: number
required: false
min: 0
max: 9999999999
label:
en_US: Seed
zh_Hans: 种子
human_description:
en_US: The same seed and prompt can produce similar images.
zh_Hans: 相同的种子和提示词可以生成相似的图像。
form: form
- name: sync_mode
type: boolean
required: false
default: false
label:
en_US: Sync Mode
zh_Hans: 同步模式
human_description:
en_US: >
If set to true, the function will wait for the image to be generated and uploaded before returning the response.
This will increase the latency but allows you to get the image directly in the response without going through the CDN.
zh_Hans: >
如果设置为 true函数将在生成并上传图像后才返回响应。
这将增加延迟,但允许您直接在响应中获取图像,而无需通过 CDN。
form: form

View File

@ -1,6 +1,7 @@
from typing import Any
import openai
from yarl import URL
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
@ -10,6 +11,7 @@ class PodcastGeneratorProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
tts_service = credentials.get("tts_service")
api_key = credentials.get("api_key")
base_url = credentials.get("openai_base_url")
if not tts_service:
raise ToolProviderCredentialValidationError("TTS service is not specified")
@ -17,13 +19,16 @@ class PodcastGeneratorProvider(BuiltinToolProviderController):
if not api_key:
raise ToolProviderCredentialValidationError("API key is missing")
if base_url:
base_url = str(URL(base_url) / "v1")
if tts_service == "openai":
self._validate_openai_credentials(api_key)
self._validate_openai_credentials(api_key, base_url)
else:
raise ToolProviderCredentialValidationError(f"Unsupported TTS service: {tts_service}")
def _validate_openai_credentials(self, api_key: str) -> None:
client = openai.OpenAI(api_key=api_key)
def _validate_openai_credentials(self, api_key: str, base_url: str | None) -> None:
client = openai.OpenAI(api_key=api_key, base_url=base_url)
try:
# We're using a simple API call to validate the credentials
client.models.list()

View File

@ -118,11 +118,11 @@ class FileSegment(Segment):
@property
def log(self) -> str:
return str(self.value)
return ""
@property
def text(self) -> str:
return str(self.value)
return ""
class ArrayAnySegment(ArraySegment):
@ -155,3 +155,11 @@ class ArrayFileSegment(ArraySegment):
for item in self.value:
items.append(item.markdown)
return "\n".join(items)
@property
def log(self) -> str:
return ""
@property
def text(self) -> str:
return ""

View File

@ -143,14 +143,14 @@ def _extract_text_by_file_extension(*, file_content: bytes, file_extension: str)
def _extract_text_from_plain_text(file_content: bytes) -> str:
try:
return file_content.decode("utf-8")
return file_content.decode("utf-8", "ignore")
except UnicodeDecodeError as e:
raise TextExtractionError("Failed to decode plain text file") from e
def _extract_text_from_json(file_content: bytes) -> str:
try:
json_data = json.loads(file_content.decode("utf-8"))
json_data = json.loads(file_content.decode("utf-8", "ignore"))
return json.dumps(json_data, indent=2, ensure_ascii=False)
except (UnicodeDecodeError, json.JSONDecodeError) as e:
raise TextExtractionError(f"Failed to decode or parse JSON file: {e}") from e
@ -159,7 +159,7 @@ def _extract_text_from_json(file_content: bytes) -> str:
def _extract_text_from_yaml(file_content: bytes) -> str:
"""Extract the content from yaml file"""
try:
yaml_data = yaml.safe_load_all(file_content.decode("utf-8"))
yaml_data = yaml.safe_load_all(file_content.decode("utf-8", "ignore"))
return yaml.dump_all(yaml_data, allow_unicode=True, sort_keys=False)
except (UnicodeDecodeError, yaml.YAMLError) as e:
raise TextExtractionError(f"Failed to decode or parse YAML file: {e}") from e
@ -217,7 +217,7 @@ def _extract_text_from_file(file: File):
def _extract_text_from_csv(file_content: bytes) -> str:
try:
csv_file = io.StringIO(file_content.decode("utf-8"))
csv_file = io.StringIO(file_content.decode("utf-8", "ignore"))
csv_reader = csv.reader(csv_file)
rows = list(csv_reader)

View File

@ -39,7 +39,14 @@ class VisionConfig(BaseModel):
class PromptConfig(BaseModel):
jinja2_variables: Optional[list[VariableSelector]] = None
jinja2_variables: Sequence[VariableSelector] = Field(default_factory=list)
@field_validator("jinja2_variables", mode="before")
@classmethod
def convert_none_jinja2_variables(cls, v: Any):
if v is None:
return []
return v
class LLMNodeChatModelMessage(ChatModelMessage):
@ -53,7 +60,14 @@ class LLMNodeCompletionModelPromptTemplate(CompletionModelPromptTemplate):
class LLMNodeData(BaseNodeData):
model: ModelConfig
prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate
prompt_config: Optional[PromptConfig] = None
prompt_config: PromptConfig = Field(default_factory=PromptConfig)
memory: Optional[MemoryConfig] = None
context: ContextConfig
vision: VisionConfig = Field(default_factory=VisionConfig)
@field_validator("prompt_config", mode="before")
@classmethod
def convert_none_prompt_config(cls, v: Any):
if v is None:
return PromptConfig()
return v

View File

@ -24,3 +24,11 @@ class LLMModeRequiredError(LLMNodeError):
class NoPromptFoundError(LLMNodeError):
"""Raised when no prompt is found in the LLM configuration."""
class NotSupportedPromptTypeError(LLMNodeError):
"""Raised when the prompt type is not supported."""
class MemoryRolePrefixRequiredError(LLMNodeError):
"""Raised when memory role prefix is required for completion model."""

View File

@ -1,4 +1,5 @@
import json
import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
@ -6,21 +7,26 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
from core.entities.model_entities import ModelStatus
from core.entities.provider_entities import QuotaUnit
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file import FileType, file_manager
from core.helper.code_executor import CodeExecutor, CodeLanguage
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities import (
AudioPromptMessageContent,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
TextPromptMessageContent,
VideoPromptMessageContent,
)
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageRole,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.variables import (
@ -32,8 +38,9 @@ from core.variables import (
ObjectSegment,
StringSegment,
)
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.entities.variable_entities import VariableSelector
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.event import InNodeEvent
from core.workflow.nodes.base import BaseNode
@ -62,14 +69,18 @@ from .exc import (
InvalidVariableTypeError,
LLMModeRequiredError,
LLMNodeError,
MemoryRolePrefixRequiredError,
ModelNotExistError,
NoPromptFoundError,
NotSupportedPromptTypeError,
VariableNotFoundError,
)
if TYPE_CHECKING:
from core.file.models import File
logger = logging.getLogger(__name__)
class LLMNode(BaseNode[LLMNodeData]):
_node_data_cls = LLMNodeData
@ -123,17 +134,13 @@ class LLMNode(BaseNode[LLMNodeData]):
# fetch prompt messages
if self.node_data.memory:
query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
if not query:
raise VariableNotFoundError("Query not found")
query = query.text
query = self.node_data.memory.query_prompt_template
else:
query = None
prompt_messages, stop = self._fetch_prompt_messages(
system_query=query,
inputs=inputs,
files=files,
user_query=query,
user_files=files,
context=context,
memory=memory,
model_config=model_config,
@ -141,6 +148,8 @@ class LLMNode(BaseNode[LLMNodeData]):
memory_config=self.node_data.memory,
vision_enabled=self.node_data.vision.enabled,
vision_detail=self.node_data.vision.configs.detail,
variable_pool=self.graph_runtime_state.variable_pool,
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
)
process_data = {
@ -181,6 +190,17 @@ class LLMNode(BaseNode[LLMNodeData]):
)
)
return
except Exception as e:
logger.exception(f"Node {self.node_id} failed to run: {e}")
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
inputs=node_inputs,
process_data=process_data,
)
)
return
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
@ -203,8 +223,8 @@ class LLMNode(BaseNode[LLMNodeData]):
self,
node_data_model: ModelConfig,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: Optional[list[str]] = None,
prompt_messages: Sequence[PromptMessage],
stop: Optional[Sequence[str]] = None,
) -> Generator[NodeEvent, None, None]:
db.session.close()
@ -519,9 +539,8 @@ class LLMNode(BaseNode[LLMNodeData]):
def _fetch_prompt_messages(
self,
*,
system_query: str | None = None,
inputs: dict[str, str] | None = None,
files: Sequence["File"],
user_query: str | None = None,
user_files: Sequence["File"],
context: str | None = None,
memory: TokenBufferMemory | None = None,
model_config: ModelConfigWithCredentialsEntity,
@ -529,58 +548,146 @@ class LLMNode(BaseNode[LLMNodeData]):
memory_config: MemoryConfig | None = None,
vision_enabled: bool = False,
vision_detail: ImagePromptMessageContent.DETAIL,
) -> tuple[list[PromptMessage], Optional[list[str]]]:
inputs = inputs or {}
variable_pool: VariablePool,
jinja2_variables: Sequence[VariableSelector],
) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
prompt_messages = []
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs=inputs,
query=system_query or "",
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config,
)
stop = model_config.stop
if isinstance(prompt_template, list):
# For chat model
prompt_messages.extend(
_handle_list_messages(
messages=prompt_template,
context=context,
jinja2_variables=jinja2_variables,
variable_pool=variable_pool,
vision_detail_config=vision_detail,
)
)
# Get memory messages for chat mode
memory_messages = _handle_memory_chat_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Extend prompt_messages with memory messages
prompt_messages.extend(memory_messages)
# Add current query to the prompt messages
if user_query:
message = LLMNodeChatModelMessage(
text=user_query,
role=PromptMessageRole.USER,
edition_type="basic",
)
prompt_messages.extend(
_handle_list_messages(
messages=[message],
context="",
jinja2_variables=[],
variable_pool=variable_pool,
vision_detail_config=vision_detail,
)
)
elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
# For completion model
prompt_messages.extend(
_handle_completion_template(
template=prompt_template,
context=context,
jinja2_variables=jinja2_variables,
variable_pool=variable_pool,
)
)
# Get memory text for completion model
memory_text = _handle_memory_completion_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Insert histories into the prompt
prompt_content = prompt_messages[0].content
if "#histories#" in prompt_content:
prompt_content = prompt_content.replace("#histories#", memory_text)
else:
prompt_content = memory_text + "\n" + prompt_content
prompt_messages[0].content = prompt_content
# Add current query to the prompt message
if user_query:
prompt_content = prompt_messages[0].content.replace("#sys.query#", user_query)
prompt_messages[0].content = prompt_content
else:
errmsg = f"Prompt type {type(prompt_template)} is not supported"
logger.warning(errmsg)
raise NotSupportedPromptTypeError(errmsg)
if vision_enabled and user_files:
file_prompts = []
for file in user_files:
file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
file_prompts.append(file_prompt)
if (
len(prompt_messages) > 0
and isinstance(prompt_messages[-1], UserPromptMessage)
and isinstance(prompt_messages[-1].content, list)
):
prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
else:
prompt_messages.append(UserPromptMessage(content=file_prompts))
# Filter prompt messages
filtered_prompt_messages = []
for prompt_message in prompt_messages:
if prompt_message.is_empty():
continue
if not isinstance(prompt_message.content, str):
if isinstance(prompt_message.content, list):
prompt_message_content = []
for content_item in prompt_message.content or []:
# Skip image if vision is disabled
if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
for content_item in prompt_message.content:
# Skip content if features are not defined
if not model_config.model_schema.features:
if content_item.type != PromptMessageContentType.TEXT:
continue
prompt_message_content.append(content_item)
continue
if isinstance(content_item, ImagePromptMessageContent):
# Override vision config if LLM node has vision config,
# cuz vision detail is related to the configuration from FileUpload feature.
content_item.detail = vision_detail
prompt_message_content.append(content_item)
elif isinstance(
content_item, TextPromptMessageContent | AudioPromptMessageContent | VideoPromptMessageContent
# Skip content if corresponding feature is not supported
if (
(
content_item.type == PromptMessageContentType.IMAGE
and ModelFeature.VISION not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.DOCUMENT
and ModelFeature.DOCUMENT not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.VIDEO
and ModelFeature.VIDEO not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.AUDIO
and ModelFeature.AUDIO not in model_config.model_schema.features
)
):
prompt_message_content.append(content_item)
if len(prompt_message_content) > 1:
prompt_message.content = prompt_message_content
elif (
len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
):
continue
prompt_message_content.append(content_item)
if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
prompt_message.content = prompt_message_content[0].data
else:
prompt_message.content = prompt_message_content
if prompt_message.is_empty():
continue
filtered_prompt_messages.append(prompt_message)
if not filtered_prompt_messages:
if len(filtered_prompt_messages) == 0:
raise NoPromptFoundError(
"No prompt found in the LLM configuration. "
"Please ensure a prompt is properly configured before proceeding."
)
stop = model_config.stop
return filtered_prompt_messages, stop
@classmethod
@ -715,3 +822,198 @@ class LLMNode(BaseNode[LLMNodeData]):
}
},
}
def _combine_text_message_with_role(*, text: str, role: PromptMessageRole):
match role:
case PromptMessageRole.USER:
return UserPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.ASSISTANT:
return AssistantPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.SYSTEM:
return SystemPromptMessage(content=[TextPromptMessageContent(data=text)])
raise NotImplementedError(f"Role {role} is not supported")
def _render_jinja2_message(
*,
template: str,
jinjia2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
):
if not template:
return ""
jinjia2_inputs = {}
for jinja2_variable in jinjia2_variables:
variable = variable_pool.get(jinja2_variable.value_selector)
jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
code_execute_resp = CodeExecutor.execute_workflow_code_template(
language=CodeLanguage.JINJA2,
code=template,
inputs=jinjia2_inputs,
)
result_text = code_execute_resp["result"]
return result_text
def _handle_list_messages(
*,
messages: Sequence[LLMNodeChatModelMessage],
context: Optional[str],
jinja2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
vision_detail_config: ImagePromptMessageContent.DETAIL,
) -> Sequence[PromptMessage]:
prompt_messages = []
for message in messages:
if message.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=message.jinja2_text or "",
jinjia2_variables=jinja2_variables,
variable_pool=variable_pool,
)
prompt_message = _combine_text_message_with_role(text=result_text, role=message.role)
prompt_messages.append(prompt_message)
else:
# Get segment group from basic message
if context:
template = message.text.replace("{#context#}", context)
else:
template = message.text
segment_group = variable_pool.convert_template(template)
# Process segments for images
file_contents = []
for segment in segment_group.value:
if isinstance(segment, ArrayFileSegment):
for file in segment.value:
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=vision_detail_config
)
file_contents.append(file_content)
if isinstance(segment, FileSegment):
file = segment.value
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=vision_detail_config
)
file_contents.append(file_content)
# Create message with text from all segments
plain_text = segment_group.text
if plain_text:
prompt_message = _combine_text_message_with_role(text=plain_text, role=message.role)
prompt_messages.append(prompt_message)
if file_contents:
# Create message with image contents
prompt_message = UserPromptMessage(content=file_contents)
prompt_messages.append(prompt_message)
return prompt_messages
def _calculate_rest_token(
*, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
) -> int:
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(str(parameter_rule.use_template))
or 0
)
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
def _handle_memory_chat_mode(
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> Sequence[PromptMessage]:
memory_messages = []
# Get messages from memory for chat model
if memory and memory_config:
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
memory_messages = memory.get_history_prompt_messages(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
)
return memory_messages
def _handle_memory_completion_mode(
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> str:
memory_text = ""
# Get history text from memory for completion model
if memory and memory_config:
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
if not memory_config.role_prefix:
raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
memory_text = memory.get_history_prompt_text(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
human_prefix=memory_config.role_prefix.user,
ai_prefix=memory_config.role_prefix.assistant,
)
return memory_text
def _handle_completion_template(
*,
template: LLMNodeCompletionModelPromptTemplate,
context: Optional[str],
jinja2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
) -> Sequence[PromptMessage]:
"""Handle completion template processing outside of LLMNode class.
Args:
template: The completion model prompt template
context: Optional context string
jinja2_variables: Variables for jinja2 template rendering
variable_pool: Variable pool for template conversion
Returns:
Sequence of prompt messages
"""
prompt_messages = []
if template.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=template.jinja2_text or "",
jinjia2_variables=jinja2_variables,
variable_pool=variable_pool,
)
else:
if context:
template_text = template.text.replace("{#context#}", context)
else:
template_text = template.text
result_text = variable_pool.convert_template(template_text).text
prompt_message = _combine_text_message_with_role(text=result_text, role=PromptMessageRole.USER)
prompt_messages.append(prompt_message)
return prompt_messages

View File

@ -86,12 +86,14 @@ class QuestionClassifierNode(LLMNode):
)
prompt_messages, stop = self._fetch_prompt_messages(
prompt_template=prompt_template,
system_query=query,
user_query=query,
memory=memory,
model_config=model_config,
files=files,
user_files=files,
vision_enabled=node_data.vision.enabled,
vision_detail=node_data.vision.configs.detail,
variable_pool=variable_pool,
jinja2_variables=[],
)
# handle invoke result

View File

@ -21,7 +21,7 @@ if [[ "${MODE}" == "worker" ]]; then
fi
exec celery -A app.celery worker -P ${CELERY_WORKER_CLASS:-gevent} $CONCURRENCY_OPTION --loglevel ${LOG_LEVEL} \
-Q ${CELERY_QUEUES:-dataset,generation,mail,ops_trace,app_deletion}
-Q ${CELERY_QUEUES:-dataset,mail,ops_trace,app_deletion}
elif [[ "${MODE}" == "beat" ]]; then
exec celery -A app.celery beat --loglevel ${LOG_LEVEL}

17
api/poetry.lock generated
View File

@ -2411,6 +2411,21 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "faker"
version = "32.1.0"
description = "Faker is a Python package that generates fake data for you."
optional = false
python-versions = ">=3.8"
files = [
{file = "Faker-32.1.0-py3-none-any.whl", hash = "sha256:c77522577863c264bdc9dad3a2a750ad3f7ee43ff8185072e482992288898814"},
{file = "faker-32.1.0.tar.gz", hash = "sha256:aac536ba04e6b7beb2332c67df78485fc29c1880ff723beac6d1efd45e2f10f5"},
]
[package.dependencies]
python-dateutil = ">=2.4"
typing-extensions = "*"
[[package]]
name = "fastapi"
version = "0.115.4"
@ -11005,4 +11020,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "f20bd678044926913dbbc24bd0cf22503a75817aa55f59457ff7822032139b77"
content-hash = "0ab603323ea1d83690d4ee61e6d199a2bca6f3e2cc4b454a4ebf99aa6f6907bd"

View File

@ -265,6 +265,7 @@ weaviate-client = "~3.21.0"
optional = true
[tool.poetry.group.dev.dependencies]
coverage = "~7.2.4"
faker = "~32.1.0"
pytest = "~8.3.2"
pytest-benchmark = "~4.0.0"
pytest-env = "~1.1.3"

View File

@ -1458,6 +1458,7 @@ class SegmentService:
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
position = max_position + 1 if max_position else 1
for segment_item in segments:
content = segment_item["content"]
doc_id = str(uuid.uuid4())
@ -1475,7 +1476,7 @@ class SegmentService:
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
position=position,
content=content,
word_count=len(content),
tokens=tokens,
@ -1490,6 +1491,7 @@ class SegmentService:
increment_word_count += segment_document.word_count
db.session.add(segment_document)
segment_data_list.append(segment_document)
position += 1
pre_segment_data_list.append(segment_document)
if "keywords" in segment_item:

View File

@ -25,7 +25,9 @@ def document_indexing_task(dataset_id: str, document_ids: list):
start_at = time.perf_counter()
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
logging.info(click.style("Dataset is not found: {}".format(dataset_id), fg="yellow"))
return
# check document limit
features = FeatureService.get_features(dataset.tenant_id)
try:

View File

@ -11,7 +11,6 @@ from core.model_runtime.entities.message_entities import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.llm.llm import AzureAIStudioLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.azure_ai_studio import setup_azure_ai_studio_mock
@pytest.mark.parametrize("setup_azure_ai_studio_mock", [["chat"]], indirect=True)

View File

@ -4,29 +4,21 @@ import pytest
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureAIStudioRerankModel
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureRerankModel
def test_validate_credentials():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="azure-ai-studio-rerank-v1",
credentials={"api_key": "invalid_key", "api_base": os.getenv("AZURE_AI_STUDIO_API_BASE")},
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
def test_invoke_model():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
result = model.invoke(
model="azure-ai-studio-rerank-v1",

View File

@ -1,125 +1,484 @@
from collections.abc import Sequence
from typing import Optional
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom
from configs import dify_config
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import CustomConfiguration, SystemConfiguration
from core.file import File, FileTransferMethod, FileType
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType, ProviderModel
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
from core.workflow.nodes.end import EndStreamParam
from core.workflow.nodes.llm.entities import ContextConfig, LLMNodeData, ModelConfig, VisionConfig, VisionConfigOptions
from core.workflow.nodes.llm.entities import (
ContextConfig,
LLMNodeChatModelMessage,
LLMNodeData,
ModelConfig,
VisionConfig,
VisionConfigOptions,
)
from core.workflow.nodes.llm.node import LLMNode
from models.enums import UserFrom
from models.provider import ProviderType
from models.workflow import WorkflowType
from tests.unit_tests.core.workflow.nodes.llm.test_scenarios import LLMNodeTestScenario
class TestLLMNode:
@pytest.fixture
def llm_node(self):
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
class MockTokenBufferMemory:
def __init__(self, history_messages=None):
self.history_messages = history_messages or []
def test_fetch_files_with_file_segment(self, llm_node):
file = File(
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]:
if message_limit is not None:
return self.history_messages[-message_limit * 2 :]
return self.history_messages
@pytest.fixture
def llm_node():
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
@pytest.fixture
def model_config():
# Create actual provider and model type instances
model_provider_factory = ModelProviderFactory()
provider_instance = model_provider_factory.get_provider_instance("openai")
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
# Create a ProviderModelBundle
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id="1",
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(enabled=False),
custom_configuration=CustomConfiguration(provider=None),
model_settings=[],
),
provider_instance=provider_instance,
model_type_instance=model_type_instance,
)
# Create and return a ModelConfigWithCredentialsEntity
return ModelConfigWithCredentialsEntity(
provider="openai",
model="gpt-3.5-turbo",
model_schema=AIModelEntity(
model="gpt-3.5-turbo",
label=I18nObject(en_US="GPT-3.5 Turbo"),
model_type=ModelType.LLM,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={},
),
mode="chat",
credentials={},
parameters={},
provider_model_bundle=provider_model_bundle,
)
def test_fetch_files_with_file_segment(llm_node):
file = File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
def test_fetch_files_with_array_file_segment(llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
def test_fetch_files_with_none_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_array_any_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_non_existent_variable(llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
prompt_template = []
llm_node.node_data.prompt_template = prompt_template
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
]
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
fake_query = faker.sentence()
def test_fetch_files_with_array_file_segment(self, llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=fake_query,
user_files=files,
context=None,
memory=None,
model_config=model_config,
prompt_template=prompt_template,
memory_config=None,
vision_enabled=False,
vision_detail=fake_vision_detail,
variable_pool=llm_node.graph_runtime_state.variable_pool,
jinja2_variables=[],
)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
assert prompt_messages == [UserPromptMessage(content=fake_query)]
def test_fetch_files_with_none_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
# Setup dify config
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
dify_config.MULTIMODAL_SEND_VIDEO_FORMAT = "url"
def test_fetch_files_with_array_any_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
# Generate fake values for prompt template
fake_assistant_prompt = faker.sentence()
fake_query = faker.sentence()
fake_context = faker.sentence()
fake_window_size = faker.random_int(min=1, max=3)
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup mock memory with history messages
mock_history = [
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
]
def test_fetch_files_with_non_existent_variable(self, llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup memory configuration
memory_config = MemoryConfig(
role_prefix=MemoryConfig.RolePrefix(user="Human", assistant="Assistant"),
window=MemoryConfig.WindowConfig(enabled=True, size=fake_window_size),
query_prompt_template=None,
)
memory = MockTokenBufferMemory(history_messages=mock_history)
# Test scenarios covering different file input combinations
test_scenarios = [
LLMNodeTestScenario(
description="No files",
user_query=fake_query,
user_files=[],
features=[],
vision_enabled=False,
vision_detail=None,
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(content=fake_query),
],
),
LLMNodeTestScenario(
description="User files",
user_query=fake_query,
user_files=[
File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(
content=[
TextPromptMessageContent(data=fake_query),
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
],
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File",
user_query=fake_query,
user_files=[],
vision_enabled=False,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=[
UserPromptMessage(
content=[
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
]
+ mock_history[fake_window_size * -2 :]
+ [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File without vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File with video file and vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.VIDEO,
filename="test1.mp4",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
extension="mp4",
)
},
),
]
for scenario in test_scenarios:
model_config.model_schema.features = scenario.features
for k, v in scenario.file_variables.items():
selector = k.split(".")
llm_node.graph_runtime_state.variable_pool.add(selector, v)
# Call the method under test
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=scenario.user_query,
user_files=scenario.user_files,
context=fake_context,
memory=memory,
model_config=model_config,
prompt_template=scenario.prompt_template,
memory_config=memory_config,
vision_enabled=scenario.vision_enabled,
vision_detail=scenario.vision_detail,
variable_pool=llm_node.graph_runtime_state.variable_pool,
jinja2_variables=[],
)
# Verify the result
assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
assert (
prompt_messages == scenario.expected_messages
), f"Message content mismatch in scenario: {scenario.description}"

View File

@ -0,0 +1,25 @@
from collections.abc import Mapping, Sequence
from pydantic import BaseModel, Field
from core.file import File
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelFeature
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage
class LLMNodeTestScenario(BaseModel):
"""Test scenario for LLM node testing."""
description: str = Field(..., description="Description of the test scenario")
user_query: str = Field(..., description="User query input")
user_files: Sequence[File] = Field(default_factory=list, description="List of user files")
vision_enabled: bool = Field(default=False, description="Whether vision is enabled")
vision_detail: str | None = Field(None, description="Vision detail level if vision is enabled")
features: Sequence[ModelFeature] = Field(default_factory=list, description="List of model features")
window_size: int = Field(..., description="Window size for memory")
prompt_template: Sequence[LLMNodeChatModelMessage] = Field(..., description="Template for prompt messages")
file_variables: Mapping[str, File | Sequence[File]] = Field(
default_factory=dict, description="List of file variables"
)
expected_messages: Sequence[PromptMessage] = Field(..., description="Expected messages after processing")

View File

@ -140,6 +140,17 @@ def test_extract_text_from_plain_text():
assert text == "Hello, world!"
def test_extract_text_from_plain_text_non_utf8():
import tempfile
non_utf8_content = b"Hello, world\xa9." # \xA9 represents © in Latin-1
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
temp_file.write(non_utf8_content)
temp_file.seek(0)
text = _extract_text_from_plain_text(temp_file.read())
assert text == "Hello, world."
@patch("pypdfium2.PdfDocument")
def test_extract_text_from_pdf(mock_pdf_document):
mock_page = Mock()

View File

@ -689,6 +689,9 @@ TEMPLATE_TRANSFORM_MAX_LENGTH=80000
CODE_MAX_STRING_ARRAY_LENGTH=30
CODE_MAX_OBJECT_ARRAY_LENGTH=30
CODE_MAX_NUMBER_ARRAY_LENGTH=1000
CODE_EXECUTION_CONNECT_TIMEOUT=10
CODE_EXECUTION_READ_TIMEOUT=60
CODE_EXECUTION_WRITE_TIMEOUT=10
# Workflow runtime configuration
WORKFLOW_MAX_EXECUTION_STEPS=500

View File

@ -244,6 +244,9 @@ x-shared-env: &shared-api-worker-env
RESET_PASSWORD_TOKEN_EXPIRY_MINUTES: ${RESET_PASSWORD_TOKEN_EXPIRY_MINUTES:-5}
CODE_EXECUTION_ENDPOINT: ${CODE_EXECUTION_ENDPOINT:-http://sandbox:8194}
CODE_EXECUTION_API_KEY: ${SANDBOX_API_KEY:-dify-sandbox}
CODE_EXECUTION_CONNECT_TIMEOUT: ${CODE_EXECUTION_CONNECT_TIMEOUT:-10}
CODE_EXECUTION_READ_TIMEOUT: ${CODE_EXECUTION_READ_TIMEOUT:-60}
CODE_EXECUTION_WRITE_TIMEOUT: ${CODE_EXECUTION_WRITE_TIMEOUT:-10}
CODE_MAX_NUMBER: ${CODE_MAX_NUMBER:-9223372036854775807}
CODE_MIN_NUMBER: ${CODE_MIN_NUMBER:--9223372036854775808}
CODE_MAX_DEPTH: ${CODE_MAX_DEPTH:-5}

View File

@ -1,5 +1,5 @@
# base image
FROM node:20.11-alpine3.19 AS base
FROM node:20-alpine3.20 AS base
LABEL maintainer="takatost@gmail.com"
# if you located in China, you can use aliyun mirror to speed up

View File

@ -44,12 +44,6 @@ export const fileUpload: FileUpload = ({
}
export const getFileExtension = (fileName: string, fileMimetype: string, isRemote?: boolean) => {
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
if (fileName) {
const fileNamePair = fileName.split('.')
const fileNamePairLength = fileNamePair.length
@ -58,6 +52,12 @@ export const getFileExtension = (fileName: string, fileMimetype: string, isRemot
return fileNamePair[fileNamePairLength - 1]
}
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
return ''
}

View File

@ -53,6 +53,6 @@ export const getInputVars = (text: string): ValueSelector[] => {
export const FILE_EXTS: Record<string, string[]> = {
[SupportUploadFileTypes.image]: ['JPG', 'JPEG', 'PNG', 'GIF', 'WEBP', 'SVG'],
[SupportUploadFileTypes.document]: ['TXT', 'MD', 'MARKDOWN', 'PDF', 'HTML', 'XLSX', 'XLS', 'DOCX', 'CSV', 'EML', 'MSG', 'PPTX', 'PPT', 'XML', 'EPUB'],
[SupportUploadFileTypes.audio]: ['MP3', 'M4A', 'WAV', 'WEBM', 'AMR'],
[SupportUploadFileTypes.audio]: ['MP3', 'M4A', 'WAV', 'WEBM', 'AMR', 'MPGA'],
[SupportUploadFileTypes.video]: ['MP4', 'MOV', 'MPEG', 'MPGA'],
}

View File

@ -144,6 +144,7 @@ const ConfigPromptItem: FC<Props> = ({
onEditionTypeChange={onEditionTypeChange}
varList={varList}
handleAddVariable={handleAddVariable}
isSupportFileVar
/>
)
}

View File

@ -67,6 +67,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
handleStop,
varInputs,
runResult,
filterJinjia2InputVar,
} = useConfig(id, data)
const model = inputs.model
@ -194,7 +195,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
list={inputs.prompt_config?.jinja2_variables || []}
onChange={handleVarListChange}
onVarNameChange={handleVarNameChange}
filterVar={filterVar}
filterVar={filterJinjia2InputVar}
/>
</Field>
)}
@ -233,6 +234,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
hasSetBlockStatus={hasSetBlockStatus}
nodesOutputVars={availableVars}
availableNodes={availableNodesWithParent}
isSupportFileVar
/>
{inputs.memory.query_prompt_template && !inputs.memory.query_prompt_template.includes('{{#sys.query#}}') && (

View File

@ -278,11 +278,15 @@ const useConfig = (id: string, payload: LLMNodeType) => {
}, [inputs, setInputs])
const filterInputVar = useCallback((varPayload: Var) => {
return [VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber, VarType.arrayFile].includes(varPayload.type)
}, [])
const filterJinjia2InputVar = useCallback((varPayload: Var) => {
return [VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber].includes(varPayload.type)
}, [])
const filterMemoryPromptVar = useCallback((varPayload: Var) => {
return [VarType.arrayObject, VarType.array, VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber].includes(varPayload.type)
return [VarType.arrayObject, VarType.array, VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber, VarType.arrayFile].includes(varPayload.type)
}, [])
const {
@ -406,6 +410,7 @@ const useConfig = (id: string, payload: LLMNodeType) => {
handleRun,
handleStop,
runResult,
filterJinjia2InputVar,
}
}