Compare commits

..

9 Commits

Author SHA1 Message Date
Jason Tan
d8ffc1d937
Merge 79765848e8 into 4b2abf8ac2 2024-11-15 10:44:58 +08:00
非法操作
4b2abf8ac2
fix: create_blob_message of tool will always create image type file (#10701)
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
2024-11-15 10:38:12 +08:00
Bowen Liang
365cb4b368
chore(lint): bump ruff from 0.6.9 to 0.7.3 (#10714) 2024-11-15 09:19:41 +08:00
GeorgeCaoJ
c85bff235d
fix(i18n): handle key naming error (#10713) 2024-11-15 09:01:38 +08:00
Kalo Chin
ad16180b1a
feat(tool): fal ai wizper ASR built-in tool (#10716) 2024-11-15 09:01:07 +08:00
jarvis2f
5ff02b469f
fix:position error when creating segments (#10706)
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions
2024-11-14 21:25:15 +08:00
Bowen Liang
44f57ad9a8
chore: Bump Alpine Linux to 3.20 in web dockerfile (#10671) 2024-11-14 20:57:01 +08:00
yihong
94fd6f6901
fix: typo in test (#10707)
Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2024-11-14 20:54:13 +08:00
SiliconFlow, Inc
e61242a337
feat: add vlm models from siliconflow (#10704) 2024-11-14 20:53:35 +08:00
33 changed files with 1283 additions and 54 deletions

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-26B
label:
en_US: OpenGVLab/InternVL2-26B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/OpenGVLab/InternVL2-8B
label:
en_US: Pro/OpenGVLab/InternVL2-8B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -1,16 +1,18 @@
- Tencent/Hunyuan-A52B-Instruct
- Qwen/Qwen2.5-72B-Instruct - Qwen/Qwen2.5-72B-Instruct
- Qwen/Qwen2.5-32B-Instruct - Qwen/Qwen2.5-32B-Instruct
- Qwen/Qwen2.5-14B-Instruct - Qwen/Qwen2.5-14B-Instruct
- Qwen/Qwen2.5-7B-Instruct - Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-Coder-32B-Instruct
- Qwen/Qwen2.5-Coder-7B-Instruct - Qwen/Qwen2.5-Coder-7B-Instruct
- Qwen/Qwen2.5-Math-72B-Instruct - Qwen/Qwen2.5-Math-72B-Instruct
- Qwen/Qwen2-72B-Instruct - Qwen/Qwen2-VL-72B-Instruct
- Qwen/Qwen2-57B-A14B-Instruct
- Qwen/Qwen2-7B-Instruct
- Qwen/Qwen2-1.5B-Instruct - Qwen/Qwen2-1.5B-Instruct
- Pro/Qwen/Qwen2-VL-7B-Instruct
- OpenGVLab/InternVL2-Llama3-76B
- OpenGVLab/InternVL2-26B
- Pro/OpenGVLab/InternVL2-8B
- deepseek-ai/DeepSeek-V2.5 - deepseek-ai/DeepSeek-V2.5
- deepseek-ai/DeepSeek-V2-Chat
- deepseek-ai/DeepSeek-Coder-V2-Instruct
- THUDM/glm-4-9b-chat - THUDM/glm-4-9b-chat
- 01-ai/Yi-1.5-34B-Chat-16K - 01-ai/Yi-1.5-34B-Chat-16K
- 01-ai/Yi-1.5-9B-Chat-16K - 01-ai/Yi-1.5-9B-Chat-16K
@ -20,9 +22,6 @@
- meta-llama/Meta-Llama-3.1-405B-Instruct - meta-llama/Meta-Llama-3.1-405B-Instruct
- meta-llama/Meta-Llama-3.1-70B-Instruct - meta-llama/Meta-Llama-3.1-70B-Instruct
- meta-llama/Meta-Llama-3.1-8B-Instruct - meta-llama/Meta-Llama-3.1-8B-Instruct
- meta-llama/Meta-Llama-3-70B-Instruct
- meta-llama/Meta-Llama-3-8B-Instruct
- google/gemma-2-27b-it - google/gemma-2-27b-it
- google/gemma-2-9b-it - google/gemma-2-9b-it
- mistralai/Mistral-7B-Instruct-v0.2 - deepseek-ai/DeepSeek-V2-Chat
- mistralai/Mixtral-8x7B-Instruct-v0.1

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33' output: '1.33'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '1.33' output: '1.33'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -4,6 +4,8 @@ label:
model_type: llm model_type: llm
features: features:
- agent-thought - agent-thought
- tool-call
- stream-tool-call
model_properties: model_properties:
mode: chat mode: chat
context_size: 32768 context_size: 32768

View File

@ -0,0 +1,84 @@
model: Tencent/Hunyuan-A52B-Instruct
label:
en_US: Tencent/Hunyuan-A52B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: OpenGVLab/InternVL2-Llama3-76B
label:
en_US: OpenGVLab/InternVL2-Llama3-76B
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13' output: '4.13'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0' output: '0'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -6,7 +6,7 @@ features:
- agent-thought - agent-thought
model_properties: model_properties:
mode: chat mode: chat
context_size: 32768 context_size: 8192
parameter_rules: parameter_rules:
- name: temperature - name: temperature
use_template: temperature use_template: temperature

View File

@ -37,3 +37,4 @@ pricing:
output: '1.26' output: '1.26'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '4.13' output: '4.13'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -37,3 +37,4 @@ pricing:
output: '0' output: '0'
unit: '0.000001' unit: '0.000001'
currency: RMB currency: RMB
deprecated: true

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2-VL-72B-Instruct
label:
en_US: Qwen/Qwen2-VL-72B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Pro/Qwen/Qwen2-VL-7B-Instruct
label:
en_US: Pro/Qwen/Qwen2-VL-7B-Instruct
model_type: llm
features:
- vision
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 2000
min: 1
max: 2000
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '21'
output: '21'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,84 @@
model: Qwen/Qwen2.5-Coder-32B-Instruct
label:
en_US: Qwen/Qwen2.5-Coder-32B-Instruct
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 32768
parameter_rules:
- name: temperature
use_template: temperature
type: float
default: 0.3
min: 0.0
max: 2.0
help:
zh_Hans: 用于控制随机性和多样性的程度。具体来说temperature值控制了生成文本时对每个候选词的概率分布进行平滑的程度。较高的temperature值会降低概率分布的峰值使得更多的低概率词被选择生成结果更加多样化而较低的temperature值则会增强概率分布的峰值使得高概率词更容易被选择生成结果更加确定。
en_US: Used to control the degree of randomness and diversity. Specifically, the temperature value controls the degree to which the probability distribution of each candidate word is smoothed when generating text. A higher temperature value will reduce the peak value of the probability distribution, allowing more low-probability words to be selected, and the generated results will be more diverse; while a lower temperature value will enhance the peak value of the probability distribution, making it easier for high-probability words to be selected. , the generated results are more certain.
- name: max_tokens
use_template: max_tokens
type: int
default: 8192
min: 1
max: 8192
help:
zh_Hans: 用于指定模型在生成内容时token的最大数量它定义了生成的上限但不保证每次都会生成到这个数量。
en_US: It is used to specify the maximum number of tokens when the model generates content. It defines the upper limit of generation, but does not guarantee that this number will be generated every time.
- name: top_p
use_template: top_p
type: float
default: 0.8
min: 0.1
max: 0.9
help:
zh_Hans: 生成过程中核采样方法概率阈值例如取值为0.8时仅保留概率加起来大于等于0.8的最可能token的最小集合作为候选集。取值范围为0,1.0),取值越大,生成的随机性越高;取值越低,生成的确定性越高。
en_US: The probability threshold of the kernel sampling method during the generation process. For example, when the value is 0.8, only the smallest set of the most likely tokens with a sum of probabilities greater than or equal to 0.8 is retained as the candidate set. The value range is (0,1.0). The larger the value, the higher the randomness generated; the lower the value, the higher the certainty generated.
- name: top_k
type: int
min: 0
max: 99
label:
zh_Hans: 取样数量
en_US: Top k
help:
zh_Hans: 生成时采样候选集的大小。例如取值为50时仅将单次生成中得分最高的50个token组成随机采样的候选集。取值越大生成的随机性越高取值越小生成的确定性越高。
en_US: The size of the sample candidate set when generated. For example, when the value is 50, only the 50 highest-scoring tokens in a single generation form a randomly sampled candidate set. The larger the value, the higher the randomness generated; the smaller the value, the higher the certainty generated.
- name: seed
required: false
type: int
default: 1234
label:
zh_Hans: 随机种子
en_US: Random seed
help:
zh_Hans: 生成时使用的随机数种子用户控制模型生成内容的随机性。支持无符号64位整数默认值为 1234。在使用seed时模型将尽可能生成相同或相似的结果但目前不保证每次生成的结果完全相同。
en_US: The random number seed used when generating, the user controls the randomness of the content generated by the model. Supports unsigned 64-bit integers, default value is 1234. When using seed, the model will try its best to generate the same or similar results, but there is currently no guarantee that the results will be exactly the same every time.
- name: repetition_penalty
required: false
type: float
default: 1.1
label:
zh_Hans: 重复惩罚
en_US: Repetition penalty
help:
zh_Hans: 用于控制模型生成时的重复度。提高repetition_penalty时可以降低模型生成的重复度。1.0表示不做惩罚。
en_US: Used to control the repeatability when generating models. Increasing repetition_penalty can reduce the duplication of model generation. 1.0 means no punishment.
- name: response_format
label:
zh_Hans: 回复格式
en_US: Response Format
type: string
help:
zh_Hans: 指定模型必须输出的格式
en_US: specifying the format that the model must output
required: false
options:
- text
- json_object
pricing:
input: '1.26'
output: '1.26'
unit: '0.000001'
currency: RMB

View File

@ -0,0 +1,5 @@
model: FunAudioLLM/SenseVoiceSmall
model_type: speech2text
model_properties:
file_upload_limit: 1
supported_file_extensions: mp3,wav

View File

@ -3,3 +3,4 @@ model_type: speech2text
model_properties: model_properties:
file_upload_limit: 1 file_upload_limit: 1
supported_file_extensions: mp3,wav supported_file_extensions: mp3,wav
deprecated: true

View File

@ -1,5 +1,6 @@
import json import json
import random import random
from collections import UserDict
from datetime import datetime from datetime import datetime
@ -10,9 +11,9 @@ class ChatRole:
FUNCTION = "function" FUNCTION = "function"
class _Dict(dict): class _Dict(UserDict):
__setattr__ = dict.__setitem__ __setattr__ = UserDict.__setitem__
__getattr__ = dict.__getitem__ __getattr__ = UserDict.__getitem__
def __missing__(self, key): def __missing__(self, key):
return None return None

View File

@ -0,0 +1,52 @@
import io
import os
from typing import Any
import fal_client
from core.file.enums import FileAttribute, FileType
from core.file.file_manager import download, get_attr
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class WizperTool(BuiltinTool):
def _invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> ToolInvokeMessage:
audio_file = tool_parameters.get("audio_file")
task = tool_parameters.get("task", "transcribe")
language = tool_parameters.get("language", "en")
chunk_level = tool_parameters.get("chunk_level", "segment")
version = tool_parameters.get("version", "3")
if audio_file.type != FileType.AUDIO:
return [self.create_text_message("Not a valid audio file.")]
api_key = self.runtime.credentials["fal_api_key"]
os.environ["FAL_KEY"] = api_key
audio_binary = io.BytesIO(download(audio_file))
mime_type = get_attr(file=audio_file, attr=FileAttribute.MIME_TYPE)
file_data = audio_binary.getvalue()
try:
audio_url = fal_client.upload(file_data, mime_type)
except Exception as e:
return [self.create_text_message(f"Error uploading audio file: {str(e)}")]
arguments = {
"audio_url": audio_url,
"task": task,
"language": language,
"chunk_level": chunk_level,
"version": version,
}
result = fal_client.subscribe(
"fal-ai/wizper",
arguments=arguments,
with_logs=False,
)
return self.create_json_message(result)

View File

@ -0,0 +1,489 @@
identity:
name: wizper
author: Kalo Chin
label:
en_US: Wizper
zh_Hans: Wizper
description:
human:
en_US: Transcribe an audio file using the Whisper model.
zh_Hans: 使用 Whisper 模型转录音频文件。
llm: Transcribe an audio file using the Whisper model.
parameters:
- name: audio_file
type: file
required: true
label:
en_US: Audio File
zh_Hans: 音频文件
human_description:
en_US: "Upload an audio file to transcribe. Supports mp3, mp4, mpeg, mpga, m4a, wav, or webm formats."
zh_Hans: "上传要转录的音频文件。支持 mp3、mp4、mpeg、mpga、m4a、wav 或 webm 格式。"
llm_description: "Audio file to transcribe. Supported formats: mp3, mp4, mpeg, mpga, m4a, wav, or webm."
form: llm
- name: task
type: select
required: true
label:
en_US: Task
zh_Hans: 任务
human_description:
en_US: "Choose whether to transcribe the audio in its original language or translate it to English"
zh_Hans: "选择是以原始语言转录音频还是将其翻译成英语"
llm_description: "Task to perform on the audio file. Either transcribe or translate. Default value: 'transcribe'. If 'translate' is selected as the task, the audio will be translated to English, regardless of the language selected."
form: form
default: transcribe
options:
- value: transcribe
label:
en_US: Transcribe
zh_Hans: 转录
- value: translate
label:
en_US: Translate
zh_Hans: 翻译
- name: language
type: select
required: true
label:
en_US: Language
zh_Hans: 语言
human_description:
en_US: "Select the primary language spoken in the audio file"
zh_Hans: "选择音频文件中使用的主要语言"
llm_description: "Language of the audio file."
form: form
default: en
options:
- value: af
label:
en_US: Afrikaans
zh_Hans: 南非语
- value: am
label:
en_US: Amharic
zh_Hans: 阿姆哈拉语
- value: ar
label:
en_US: Arabic
zh_Hans: 阿拉伯语
- value: as
label:
en_US: Assamese
zh_Hans: 阿萨姆语
- value: az
label:
en_US: Azerbaijani
zh_Hans: 阿塞拜疆语
- value: ba
label:
en_US: Bashkir
zh_Hans: 巴什基尔语
- value: be
label:
en_US: Belarusian
zh_Hans: 白俄罗斯语
- value: bg
label:
en_US: Bulgarian
zh_Hans: 保加利亚语
- value: bn
label:
en_US: Bengali
zh_Hans: 孟加拉语
- value: bo
label:
en_US: Tibetan
zh_Hans: 藏语
- value: br
label:
en_US: Breton
zh_Hans: 布列塔尼语
- value: bs
label:
en_US: Bosnian
zh_Hans: 波斯尼亚语
- value: ca
label:
en_US: Catalan
zh_Hans: 加泰罗尼亚语
- value: cs
label:
en_US: Czech
zh_Hans: 捷克语
- value: cy
label:
en_US: Welsh
zh_Hans: 威尔士语
- value: da
label:
en_US: Danish
zh_Hans: 丹麦语
- value: de
label:
en_US: German
zh_Hans: 德语
- value: el
label:
en_US: Greek
zh_Hans: 希腊语
- value: en
label:
en_US: English
zh_Hans: 英语
- value: es
label:
en_US: Spanish
zh_Hans: 西班牙语
- value: et
label:
en_US: Estonian
zh_Hans: 爱沙尼亚语
- value: eu
label:
en_US: Basque
zh_Hans: 巴斯克语
- value: fa
label:
en_US: Persian
zh_Hans: 波斯语
- value: fi
label:
en_US: Finnish
zh_Hans: 芬兰语
- value: fo
label:
en_US: Faroese
zh_Hans: 法罗语
- value: fr
label:
en_US: French
zh_Hans: 法语
- value: gl
label:
en_US: Galician
zh_Hans: 加利西亚语
- value: gu
label:
en_US: Gujarati
zh_Hans: 古吉拉特语
- value: ha
label:
en_US: Hausa
zh_Hans: 毫萨语
- value: haw
label:
en_US: Hawaiian
zh_Hans: 夏威夷语
- value: he
label:
en_US: Hebrew
zh_Hans: 希伯来语
- value: hi
label:
en_US: Hindi
zh_Hans: 印地语
- value: hr
label:
en_US: Croatian
zh_Hans: 克罗地亚语
- value: ht
label:
en_US: Haitian Creole
zh_Hans: 海地克里奥尔语
- value: hu
label:
en_US: Hungarian
zh_Hans: 匈牙利语
- value: hy
label:
en_US: Armenian
zh_Hans: 亚美尼亚语
- value: id
label:
en_US: Indonesian
zh_Hans: 印度尼西亚语
- value: is
label:
en_US: Icelandic
zh_Hans: 冰岛语
- value: it
label:
en_US: Italian
zh_Hans: 意大利语
- value: ja
label:
en_US: Japanese
zh_Hans: 日语
- value: jw
label:
en_US: Javanese
zh_Hans: 爪哇语
- value: ka
label:
en_US: Georgian
zh_Hans: 格鲁吉亚语
- value: kk
label:
en_US: Kazakh
zh_Hans: 哈萨克语
- value: km
label:
en_US: Khmer
zh_Hans: 高棉语
- value: kn
label:
en_US: Kannada
zh_Hans: 卡纳达语
- value: ko
label:
en_US: Korean
zh_Hans: 韩语
- value: la
label:
en_US: Latin
zh_Hans: 拉丁语
- value: lb
label:
en_US: Luxembourgish
zh_Hans: 卢森堡语
- value: ln
label:
en_US: Lingala
zh_Hans: 林加拉语
- value: lo
label:
en_US: Lao
zh_Hans: 老挝语
- value: lt
label:
en_US: Lithuanian
zh_Hans: 立陶宛语
- value: lv
label:
en_US: Latvian
zh_Hans: 拉脱维亚语
- value: mg
label:
en_US: Malagasy
zh_Hans: 马尔加什语
- value: mi
label:
en_US: Maori
zh_Hans: 毛利语
- value: mk
label:
en_US: Macedonian
zh_Hans: 马其顿语
- value: ml
label:
en_US: Malayalam
zh_Hans: 马拉雅拉姆语
- value: mn
label:
en_US: Mongolian
zh_Hans: 蒙古语
- value: mr
label:
en_US: Marathi
zh_Hans: 马拉地语
- value: ms
label:
en_US: Malay
zh_Hans: 马来语
- value: mt
label:
en_US: Maltese
zh_Hans: 马耳他语
- value: my
label:
en_US: Burmese
zh_Hans: 缅甸语
- value: ne
label:
en_US: Nepali
zh_Hans: 尼泊尔语
- value: nl
label:
en_US: Dutch
zh_Hans: 荷兰语
- value: nn
label:
en_US: Norwegian Nynorsk
zh_Hans: 新挪威语
- value: no
label:
en_US: Norwegian
zh_Hans: 挪威语
- value: oc
label:
en_US: Occitan
zh_Hans: 奥克语
- value: pa
label:
en_US: Punjabi
zh_Hans: 旁遮普语
- value: pl
label:
en_US: Polish
zh_Hans: 波兰语
- value: ps
label:
en_US: Pashto
zh_Hans: 普什图语
- value: pt
label:
en_US: Portuguese
zh_Hans: 葡萄牙语
- value: ro
label:
en_US: Romanian
zh_Hans: 罗马尼亚语
- value: ru
label:
en_US: Russian
zh_Hans: 俄语
- value: sa
label:
en_US: Sanskrit
zh_Hans: 梵语
- value: sd
label:
en_US: Sindhi
zh_Hans: 信德语
- value: si
label:
en_US: Sinhala
zh_Hans: 僧伽罗语
- value: sk
label:
en_US: Slovak
zh_Hans: 斯洛伐克语
- value: sl
label:
en_US: Slovenian
zh_Hans: 斯洛文尼亚语
- value: sn
label:
en_US: Shona
zh_Hans: 修纳语
- value: so
label:
en_US: Somali
zh_Hans: 索马里语
- value: sq
label:
en_US: Albanian
zh_Hans: 阿尔巴尼亚语
- value: sr
label:
en_US: Serbian
zh_Hans: 塞尔维亚语
- value: su
label:
en_US: Sundanese
zh_Hans: 巽他语
- value: sv
label:
en_US: Swedish
zh_Hans: 瑞典语
- value: sw
label:
en_US: Swahili
zh_Hans: 斯瓦希里语
- value: ta
label:
en_US: Tamil
zh_Hans: 泰米尔语
- value: te
label:
en_US: Telugu
zh_Hans: 泰卢固语
- value: tg
label:
en_US: Tajik
zh_Hans: 塔吉克语
- value: th
label:
en_US: Thai
zh_Hans: 泰语
- value: tk
label:
en_US: Turkmen
zh_Hans: 土库曼语
- value: tl
label:
en_US: Tagalog
zh_Hans: 他加禄语
- value: tr
label:
en_US: Turkish
zh_Hans: 土耳其语
- value: tt
label:
en_US: Tatar
zh_Hans: 鞑靼语
- value: uk
label:
en_US: Ukrainian
zh_Hans: 乌克兰语
- value: ur
label:
en_US: Urdu
zh_Hans: 乌尔都语
- value: uz
label:
en_US: Uzbek
zh_Hans: 乌兹别克语
- value: vi
label:
en_US: Vietnamese
zh_Hans: 越南语
- value: yi
label:
en_US: Yiddish
zh_Hans: 意第绪语
- value: yo
label:
en_US: Yoruba
zh_Hans: 约鲁巴语
- value: yue
label:
en_US: Cantonese
zh_Hans: 粤语
- value: zh
label:
en_US: Chinese
zh_Hans: 中文
- name: chunk_level
type: select
label:
en_US: Chunk Level
zh_Hans: 分块级别
human_description:
en_US: "Choose how the transcription should be divided into chunks"
zh_Hans: "选择如何将转录内容分成块"
llm_description: "Level of the chunks to return."
form: form
default: segment
options:
- value: segment
label:
en_US: Segment
zh_Hans:
- name: version
type: select
label:
en_US: Version
zh_Hans: 版本
human_description:
en_US: "Select which version of the Whisper large model to use"
zh_Hans: "选择要使用的 Whisper large 模型版本"
llm_description: "Version of the model to use. All of the models are the Whisper large variant."
form: form
default: "3"
options:
- value: "3"
label:
en_US: Version 3
zh_Hans: 版本 3

View File

@ -1,5 +1,4 @@
from collections.abc import Mapping, Sequence from collections.abc import Mapping, Sequence
from os import path
from typing import Any from typing import Any
from sqlalchemy import select from sqlalchemy import select
@ -180,7 +179,6 @@ class ToolNode(BaseNode[ToolNodeData]):
for response in tool_response: for response in tool_response:
if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}: if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
url = str(response.message) if response.message else None url = str(response.message) if response.message else None
ext = path.splitext(url)[1] if url else ".bin"
tool_file_id = str(url).split("/")[-1].split(".")[0] tool_file_id = str(url).split("/")[-1].split(".")[0]
transfer_method = response.meta.get("transfer_method", FileTransferMethod.TOOL_FILE) transfer_method = response.meta.get("transfer_method", FileTransferMethod.TOOL_FILE)
@ -202,7 +200,6 @@ class ToolNode(BaseNode[ToolNodeData]):
) )
result.append(file) result.append(file)
elif response.type == ToolInvokeMessage.MessageType.BLOB: elif response.type == ToolInvokeMessage.MessageType.BLOB:
# get tool file id
tool_file_id = str(response.message).split("/")[-1].split(".")[0] tool_file_id = str(response.message).split("/")[-1].split(".")[0]
with Session(db.engine) as session: with Session(db.engine) as session:
stmt = select(ToolFile).where(ToolFile.id == tool_file_id) stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
@ -211,7 +208,6 @@ class ToolNode(BaseNode[ToolNodeData]):
raise ValueError(f"tool file {tool_file_id} not exists") raise ValueError(f"tool file {tool_file_id} not exists")
mapping = { mapping = {
"tool_file_id": tool_file_id, "tool_file_id": tool_file_id,
"type": FileType.IMAGE,
"transfer_method": FileTransferMethod.TOOL_FILE, "transfer_method": FileTransferMethod.TOOL_FILE,
} }
file = file_factory.build_from_mapping( file = file_factory.build_from_mapping(
@ -228,13 +224,8 @@ class ToolNode(BaseNode[ToolNodeData]):
tool_file = session.scalar(stmt) tool_file = session.scalar(stmt)
if tool_file is None: if tool_file is None:
raise ToolFileError(f"Tool file {tool_file_id} does not exist") raise ToolFileError(f"Tool file {tool_file_id} does not exist")
if "." in url:
extension = "." + url.split("/")[-1].split(".")[1]
else:
extension = ".bin"
mapping = { mapping = {
"tool_file_id": tool_file_id, "tool_file_id": tool_file_id,
"type": FileType.IMAGE,
"transfer_method": transfer_method, "transfer_method": transfer_method,
"url": url, "url": url,
} }

View File

@ -180,6 +180,20 @@ def _get_remote_file_info(url: str):
return mime_type, filename, file_size return mime_type, filename, file_size
def _get_file_type_by_mimetype(mime_type: str) -> FileType:
if "image" in mime_type:
file_type = FileType.IMAGE
elif "video" in mime_type:
file_type = FileType.VIDEO
elif "audio" in mime_type:
file_type = FileType.AUDIO
elif "text" in mime_type or "pdf" in mime_type:
file_type = FileType.DOCUMENT
else:
file_type = FileType.CUSTOM
return file_type
def _build_from_tool_file( def _build_from_tool_file(
*, *,
mapping: Mapping[str, Any], mapping: Mapping[str, Any],
@ -199,12 +213,13 @@ def _build_from_tool_file(
raise ValueError(f"ToolFile {mapping.get('tool_file_id')} not found") raise ValueError(f"ToolFile {mapping.get('tool_file_id')} not found")
extension = "." + tool_file.file_key.split(".")[-1] if "." in tool_file.file_key else ".bin" extension = "." + tool_file.file_key.split(".")[-1] if "." in tool_file.file_key else ".bin"
file_type = mapping.get("type", _get_file_type_by_mimetype(tool_file.mimetype))
return File( return File(
id=mapping.get("id"), id=mapping.get("id"),
tenant_id=tenant_id, tenant_id=tenant_id,
filename=tool_file.name, filename=tool_file.name,
type=FileType.value_of(mapping.get("type")), type=file_type,
transfer_method=transfer_method, transfer_method=transfer_method,
remote_url=tool_file.original_url, remote_url=tool_file.original_url,
related_id=tool_file.id, related_id=tool_file.id,

115
api/poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. # This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]] [[package]]
name = "aiohappyeyeballs" name = "aiohappyeyeballs"
@ -932,6 +932,10 @@ files = [
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a37b8f0391212d29b3a91a799c8e4a2855e0576911cdfb2515487e30e322253d"}, {file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a37b8f0391212d29b3a91a799c8e4a2855e0576911cdfb2515487e30e322253d"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e84799f09591700a4154154cab9787452925578841a94321d5ee8fb9a9a328f0"}, {file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e84799f09591700a4154154cab9787452925578841a94321d5ee8fb9a9a328f0"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f66b5337fa213f1da0d9000bc8dc0cb5b896b726eefd9c6046f699b169c41b9e"}, {file = "Brotli-1.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f66b5337fa213f1da0d9000bc8dc0cb5b896b726eefd9c6046f699b169c41b9e"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:5dab0844f2cf82be357a0eb11a9087f70c5430b2c241493fc122bb6f2bb0917c"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:e4fe605b917c70283db7dfe5ada75e04561479075761a0b3866c081d035b01c1"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:1e9a65b5736232e7a7f91ff3d02277f11d339bf34099a56cdab6a8b3410a02b2"},
{file = "Brotli-1.1.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:58d4b711689366d4a03ac7957ab8c28890415e267f9b6589969e74b6e42225ec"},
{file = "Brotli-1.1.0-cp310-cp310-win32.whl", hash = "sha256:be36e3d172dc816333f33520154d708a2657ea63762ec16b62ece02ab5e4daf2"}, {file = "Brotli-1.1.0-cp310-cp310-win32.whl", hash = "sha256:be36e3d172dc816333f33520154d708a2657ea63762ec16b62ece02ab5e4daf2"},
{file = "Brotli-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0c6244521dda65ea562d5a69b9a26120769b7a9fb3db2fe9545935ed6735b128"}, {file = "Brotli-1.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:0c6244521dda65ea562d5a69b9a26120769b7a9fb3db2fe9545935ed6735b128"},
{file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a3daabb76a78f829cafc365531c972016e4aa8d5b4bf60660ad8ecee19df7ccc"}, {file = "Brotli-1.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a3daabb76a78f829cafc365531c972016e4aa8d5b4bf60660ad8ecee19df7ccc"},
@ -944,8 +948,14 @@ files = [
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:19c116e796420b0cee3da1ccec3b764ed2952ccfcc298b55a10e5610ad7885f9"}, {file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:19c116e796420b0cee3da1ccec3b764ed2952ccfcc298b55a10e5610ad7885f9"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:510b5b1bfbe20e1a7b3baf5fed9e9451873559a976c1a78eebaa3b86c57b4265"}, {file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:510b5b1bfbe20e1a7b3baf5fed9e9451873559a976c1a78eebaa3b86c57b4265"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a1fd8a29719ccce974d523580987b7f8229aeace506952fa9ce1d53a033873c8"}, {file = "Brotli-1.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a1fd8a29719ccce974d523580987b7f8229aeace506952fa9ce1d53a033873c8"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c247dd99d39e0338a604f8c2b3bc7061d5c2e9e2ac7ba9cc1be5a69cb6cd832f"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:1b2c248cd517c222d89e74669a4adfa5577e06ab68771a529060cf5a156e9757"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:2a24c50840d89ded6c9a8fdc7b6ed3692ed4e86f1c4a4a938e1e92def92933e0"},
{file = "Brotli-1.1.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f31859074d57b4639318523d6ffdca586ace54271a73ad23ad021acd807eb14b"},
{file = "Brotli-1.1.0-cp311-cp311-win32.whl", hash = "sha256:39da8adedf6942d76dc3e46653e52df937a3c4d6d18fdc94a7c29d263b1f5b50"}, {file = "Brotli-1.1.0-cp311-cp311-win32.whl", hash = "sha256:39da8adedf6942d76dc3e46653e52df937a3c4d6d18fdc94a7c29d263b1f5b50"},
{file = "Brotli-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:aac0411d20e345dc0920bdec5548e438e999ff68d77564d5e9463a7ca9d3e7b1"}, {file = "Brotli-1.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:aac0411d20e345dc0920bdec5548e438e999ff68d77564d5e9463a7ca9d3e7b1"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:32d95b80260d79926f5fab3c41701dbb818fde1c9da590e77e571eefd14abe28"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b760c65308ff1e462f65d69c12e4ae085cff3b332d894637f6273a12a482d09f"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:316cc9b17edf613ac76b1f1f305d2a748f1b976b033b049a6ecdfd5612c70409"}, {file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:316cc9b17edf613ac76b1f1f305d2a748f1b976b033b049a6ecdfd5612c70409"},
{file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:caf9ee9a5775f3111642d33b86237b05808dafcd6268faa492250e9b78046eb2"}, {file = "Brotli-1.1.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:caf9ee9a5775f3111642d33b86237b05808dafcd6268faa492250e9b78046eb2"},
{file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70051525001750221daa10907c77830bc889cb6d865cc0b813d9db7fefc21451"}, {file = "Brotli-1.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70051525001750221daa10907c77830bc889cb6d865cc0b813d9db7fefc21451"},
@ -956,8 +966,24 @@ files = [
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4093c631e96fdd49e0377a9c167bfd75b6d0bad2ace734c6eb20b348bc3ea180"}, {file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:4093c631e96fdd49e0377a9c167bfd75b6d0bad2ace734c6eb20b348bc3ea180"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e4c4629ddad63006efa0ef968c8e4751c5868ff0b1c5c40f76524e894c50248"}, {file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e4c4629ddad63006efa0ef968c8e4751c5868ff0b1c5c40f76524e894c50248"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:861bf317735688269936f755fa136a99d1ed526883859f86e41a5d43c61d8966"}, {file = "Brotli-1.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:861bf317735688269936f755fa136a99d1ed526883859f86e41a5d43c61d8966"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:87a3044c3a35055527ac75e419dfa9f4f3667a1e887ee80360589eb8c90aabb9"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:c5529b34c1c9d937168297f2c1fde7ebe9ebdd5e121297ff9c043bdb2ae3d6fb"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:ca63e1890ede90b2e4454f9a65135a4d387a4585ff8282bb72964fab893f2111"},
{file = "Brotli-1.1.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e79e6520141d792237c70bcd7a3b122d00f2613769ae0cb61c52e89fd3443839"},
{file = "Brotli-1.1.0-cp312-cp312-win32.whl", hash = "sha256:5f4d5ea15c9382135076d2fb28dde923352fe02951e66935a9efaac8f10e81b0"}, {file = "Brotli-1.1.0-cp312-cp312-win32.whl", hash = "sha256:5f4d5ea15c9382135076d2fb28dde923352fe02951e66935a9efaac8f10e81b0"},
{file = "Brotli-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:906bc3a79de8c4ae5b86d3d75a8b77e44404b0f4261714306e3ad248d8ab0951"}, {file = "Brotli-1.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:906bc3a79de8c4ae5b86d3d75a8b77e44404b0f4261714306e3ad248d8ab0951"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:8bf32b98b75c13ec7cf774164172683d6e7891088f6316e54425fde1efc276d5"},
{file = "Brotli-1.1.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bc37c4d6b87fb1017ea28c9508b36bbcb0c3d18b4260fcdf08b200c74a6aee8"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c0ef38c7a7014ffac184db9e04debe495d317cc9c6fb10071f7fefd93100a4f"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91d7cc2a76b5567591d12c01f019dd7afce6ba8cba6571187e21e2fc418ae648"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a93dde851926f4f2678e704fadeb39e16c35d8baebd5252c9fd94ce8ce68c4a0"},
{file = "Brotli-1.1.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f0db75f47be8b8abc8d9e31bc7aad0547ca26f24a54e6fd10231d623f183d089"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6967ced6730aed543b8673008b5a391c3b1076d834ca438bbd70635c73775368"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:7eedaa5d036d9336c95915035fb57422054014ebdeb6f3b42eac809928e40d0c"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:d487f5432bf35b60ed625d7e1b448e2dc855422e87469e3f450aa5552b0eb284"},
{file = "Brotli-1.1.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:832436e59afb93e1836081a20f324cb185836c617659b07b129141a8426973c7"},
{file = "Brotli-1.1.0-cp313-cp313-win32.whl", hash = "sha256:43395e90523f9c23a3d5bdf004733246fba087f2948f87ab28015f12359ca6a0"},
{file = "Brotli-1.1.0-cp313-cp313-win_amd64.whl", hash = "sha256:9011560a466d2eb3f5a6e4929cf4a09be405c64154e12df0dd72713f6500e32b"},
{file = "Brotli-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a090ca607cbb6a34b0391776f0cb48062081f5f60ddcce5d11838e67a01928d1"}, {file = "Brotli-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:a090ca607cbb6a34b0391776f0cb48062081f5f60ddcce5d11838e67a01928d1"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de9d02f5bda03d27ede52e8cfe7b865b066fa49258cbab568720aa5be80a47d"}, {file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de9d02f5bda03d27ede52e8cfe7b865b066fa49258cbab568720aa5be80a47d"},
{file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2333e30a5e00fe0fe55903c8832e08ee9c3b1382aacf4db26664a16528d51b4b"}, {file = "Brotli-1.1.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2333e30a5e00fe0fe55903c8832e08ee9c3b1382aacf4db26664a16528d51b4b"},
@ -967,6 +993,10 @@ files = [
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:fd5f17ff8f14003595ab414e45fce13d073e0762394f957182e69035c9f3d7c2"}, {file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:fd5f17ff8f14003595ab414e45fce13d073e0762394f957182e69035c9f3d7c2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:069a121ac97412d1fe506da790b3e69f52254b9df4eb665cd42460c837193354"}, {file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:069a121ac97412d1fe506da790b3e69f52254b9df4eb665cd42460c837193354"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:e93dfc1a1165e385cc8239fab7c036fb2cd8093728cbd85097b284d7b99249a2"}, {file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:e93dfc1a1165e385cc8239fab7c036fb2cd8093728cbd85097b284d7b99249a2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_aarch64.whl", hash = "sha256:aea440a510e14e818e67bfc4027880e2fb500c2ccb20ab21c7a7c8b5b4703d75"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_i686.whl", hash = "sha256:6974f52a02321b36847cd19d1b8e381bf39939c21efd6ee2fc13a28b0d99348c"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_ppc64le.whl", hash = "sha256:a7e53012d2853a07a4a79c00643832161a910674a893d296c9f1259859a289d2"},
{file = "Brotli-1.1.0-cp36-cp36m-musllinux_1_2_x86_64.whl", hash = "sha256:d7702622a8b40c49bffb46e1e3ba2e81268d5c04a34f460978c6b5517a34dd52"},
{file = "Brotli-1.1.0-cp36-cp36m-win32.whl", hash = "sha256:a599669fd7c47233438a56936988a2478685e74854088ef5293802123b5b2460"}, {file = "Brotli-1.1.0-cp36-cp36m-win32.whl", hash = "sha256:a599669fd7c47233438a56936988a2478685e74854088ef5293802123b5b2460"},
{file = "Brotli-1.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d143fd47fad1db3d7c27a1b1d66162e855b5d50a89666af46e1679c496e8e579"}, {file = "Brotli-1.1.0-cp36-cp36m-win_amd64.whl", hash = "sha256:d143fd47fad1db3d7c27a1b1d66162e855b5d50a89666af46e1679c496e8e579"},
{file = "Brotli-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:11d00ed0a83fa22d29bc6b64ef636c4552ebafcef57154b4ddd132f5638fbd1c"}, {file = "Brotli-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:11d00ed0a83fa22d29bc6b64ef636c4552ebafcef57154b4ddd132f5638fbd1c"},
@ -978,6 +1008,10 @@ files = [
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:919e32f147ae93a09fe064d77d5ebf4e35502a8df75c29fb05788528e330fe74"}, {file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:919e32f147ae93a09fe064d77d5ebf4e35502a8df75c29fb05788528e330fe74"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:23032ae55523cc7bccb4f6a0bf368cd25ad9bcdcc1990b64a647e7bbcce9cb5b"}, {file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:23032ae55523cc7bccb4f6a0bf368cd25ad9bcdcc1990b64a647e7bbcce9cb5b"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:224e57f6eac61cc449f498cc5f0e1725ba2071a3d4f48d5d9dffba42db196438"}, {file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:224e57f6eac61cc449f498cc5f0e1725ba2071a3d4f48d5d9dffba42db196438"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_aarch64.whl", hash = "sha256:cb1dac1770878ade83f2ccdf7d25e494f05c9165f5246b46a621cc849341dc01"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_i686.whl", hash = "sha256:3ee8a80d67a4334482d9712b8e83ca6b1d9bc7e351931252ebef5d8f7335a547"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_ppc64le.whl", hash = "sha256:5e55da2c8724191e5b557f8e18943b1b4839b8efc3ef60d65985bcf6f587dd38"},
{file = "Brotli-1.1.0-cp37-cp37m-musllinux_1_2_x86_64.whl", hash = "sha256:d342778ef319e1026af243ed0a07c97acf3bad33b9f29e7ae6a1f68fd083e90c"},
{file = "Brotli-1.1.0-cp37-cp37m-win32.whl", hash = "sha256:587ca6d3cef6e4e868102672d3bd9dc9698c309ba56d41c2b9c85bbb903cdb95"}, {file = "Brotli-1.1.0-cp37-cp37m-win32.whl", hash = "sha256:587ca6d3cef6e4e868102672d3bd9dc9698c309ba56d41c2b9c85bbb903cdb95"},
{file = "Brotli-1.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2954c1c23f81c2eaf0b0717d9380bd348578a94161a65b3a2afc62c86467dd68"}, {file = "Brotli-1.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:2954c1c23f81c2eaf0b0717d9380bd348578a94161a65b3a2afc62c86467dd68"},
{file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:efa8b278894b14d6da122a72fefcebc28445f2d3f880ac59d46c90f4c13be9a3"}, {file = "Brotli-1.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:efa8b278894b14d6da122a72fefcebc28445f2d3f880ac59d46c90f4c13be9a3"},
@ -990,6 +1024,10 @@ files = [
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ab4fbee0b2d9098c74f3057b2bc055a8bd92ccf02f65944a241b4349229185a"}, {file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:1ab4fbee0b2d9098c74f3057b2bc055a8bd92ccf02f65944a241b4349229185a"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:141bd4d93984070e097521ed07e2575b46f817d08f9fa42b16b9b5f27b5ac088"}, {file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:141bd4d93984070e097521ed07e2575b46f817d08f9fa42b16b9b5f27b5ac088"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fce1473f3ccc4187f75b4690cfc922628aed4d3dd013d047f95a9b3919a86596"}, {file = "Brotli-1.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:fce1473f3ccc4187f75b4690cfc922628aed4d3dd013d047f95a9b3919a86596"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d2b35ca2c7f81d173d2fadc2f4f31e88cc5f7a39ae5b6db5513cf3383b0e0ec7"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:af6fa6817889314555aede9a919612b23739395ce767fe7fcbea9a80bf140fe5"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:2feb1d960f760a575dbc5ab3b1c00504b24caaf6986e2dc2b01c09c87866a943"},
{file = "Brotli-1.1.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:4410f84b33374409552ac9b6903507cdb31cd30d2501fc5ca13d18f73548444a"},
{file = "Brotli-1.1.0-cp38-cp38-win32.whl", hash = "sha256:db85ecf4e609a48f4b29055f1e144231b90edc90af7481aa731ba2d059226b1b"}, {file = "Brotli-1.1.0-cp38-cp38-win32.whl", hash = "sha256:db85ecf4e609a48f4b29055f1e144231b90edc90af7481aa731ba2d059226b1b"},
{file = "Brotli-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3d7954194c36e304e1523f55d7042c59dc53ec20dd4e9ea9d151f1b62b4415c0"}, {file = "Brotli-1.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3d7954194c36e304e1523f55d7042c59dc53ec20dd4e9ea9d151f1b62b4415c0"},
{file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5fb2ce4b8045c78ebbc7b8f3c15062e435d47e7393cc57c25115cfd49883747a"}, {file = "Brotli-1.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:5fb2ce4b8045c78ebbc7b8f3c15062e435d47e7393cc57c25115cfd49883747a"},
@ -1002,6 +1040,10 @@ files = [
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:949f3b7c29912693cee0afcf09acd6ebc04c57af949d9bf77d6101ebb61e388c"}, {file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:949f3b7c29912693cee0afcf09acd6ebc04c57af949d9bf77d6101ebb61e388c"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:89f4988c7203739d48c6f806f1e87a1d96e0806d44f0fba61dba81392c9e474d"}, {file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:89f4988c7203739d48c6f806f1e87a1d96e0806d44f0fba61dba81392c9e474d"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:de6551e370ef19f8de1807d0a9aa2cdfdce2e85ce88b122fe9f6b2b076837e59"}, {file = "Brotli-1.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:de6551e370ef19f8de1807d0a9aa2cdfdce2e85ce88b122fe9f6b2b076837e59"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0737ddb3068957cf1b054899b0883830bb1fec522ec76b1098f9b6e0f02d9419"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4f3607b129417e111e30637af1b56f24f7a49e64763253bbc275c75fa887d4b2"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:6c6e0c425f22c1c719c42670d561ad682f7bfeeef918edea971a79ac5252437f"},
{file = "Brotli-1.1.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:494994f807ba0b92092a163a0a283961369a65f6cbe01e8891132b7a320e61eb"},
{file = "Brotli-1.1.0-cp39-cp39-win32.whl", hash = "sha256:f0d8a7a6b5983c2496e364b969f0e526647a06b075d034f3297dc66f3b360c64"}, {file = "Brotli-1.1.0-cp39-cp39-win32.whl", hash = "sha256:f0d8a7a6b5983c2496e364b969f0e526647a06b075d034f3297dc66f3b360c64"},
{file = "Brotli-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdad5b9014d83ca68c25d2e9444e28e967ef16e80f6b436918c700c117a85467"}, {file = "Brotli-1.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cdad5b9014d83ca68c25d2e9444e28e967ef16e80f6b436918c700c117a85467"},
{file = "Brotli-1.1.0.tar.gz", hash = "sha256:81de08ac11bcb85841e440c13611c00b67d3bf82698314928d0b676362546724"}, {file = "Brotli-1.1.0.tar.gz", hash = "sha256:81de08ac11bcb85841e440c13611c00b67d3bf82698314928d0b676362546724"},
@ -2411,6 +2453,26 @@ files = [
[package.extras] [package.extras]
test = ["pytest (>=6)"] test = ["pytest (>=6)"]
[[package]]
name = "fal-client"
version = "0.5.6"
description = "Python client for fal.ai"
optional = false
python-versions = ">=3.8"
files = [
{file = "fal_client-0.5.6-py3-none-any.whl", hash = "sha256:631fd857a3c44753ee46a2eea1e7276471453aca58faac9c3702f744c7c84050"},
{file = "fal_client-0.5.6.tar.gz", hash = "sha256:d3afc4b6250023d0ee8437ec504558231d3b106d7aabc12cda8c39883faddecb"},
]
[package.dependencies]
httpx = ">=0.21.0,<1"
httpx-sse = ">=0.4.0,<0.5"
[package.extras]
dev = ["fal-client[docs,test]"]
docs = ["sphinx", "sphinx-autodoc-typehints", "sphinx-rtd-theme"]
test = ["pillow", "pytest", "pytest-asyncio"]
[[package]] [[package]]
name = "fastapi" name = "fastapi"
version = "0.115.4" version = "0.115.4"
@ -4049,6 +4111,17 @@ http2 = ["h2 (>=3,<5)"]
socks = ["socksio (==1.*)"] socks = ["socksio (==1.*)"]
zstd = ["zstandard (>=0.18.0)"] zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "httpx-sse"
version = "0.4.0"
description = "Consume Server-Sent Event (SSE) messages with HTTPX."
optional = false
python-versions = ">=3.8"
files = [
{file = "httpx-sse-0.4.0.tar.gz", hash = "sha256:1e81a3a3070ce322add1d3529ed42eb5f70817f45ed6ec915ab753f961139721"},
{file = "httpx_sse-0.4.0-py3-none-any.whl", hash = "sha256:f329af6eae57eaa2bdfd962b42524764af68075ea87370a2de920af5341e318f"},
]
[[package]] [[package]]
name = "huggingface-hub" name = "huggingface-hub"
version = "0.16.4" version = "0.16.4"
@ -8466,29 +8539,29 @@ pyasn1 = ">=0.1.3"
[[package]] [[package]]
name = "ruff" name = "ruff"
version = "0.6.9" version = "0.7.3"
description = "An extremely fast Python linter and code formatter, written in Rust." description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false optional = false
python-versions = ">=3.7" python-versions = ">=3.7"
files = [ files = [
{file = "ruff-0.6.9-py3-none-linux_armv6l.whl", hash = "sha256:064df58d84ccc0ac0fcd63bc3090b251d90e2a372558c0f057c3f75ed73e1ccd"}, {file = "ruff-0.7.3-py3-none-linux_armv6l.whl", hash = "sha256:34f2339dc22687ec7e7002792d1f50712bf84a13d5152e75712ac08be565d344"},
{file = "ruff-0.6.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:140d4b5c9f5fc7a7b074908a78ab8d384dd7f6510402267bc76c37195c02a7ec"}, {file = "ruff-0.7.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:fb397332a1879b9764a3455a0bb1087bda876c2db8aca3a3cbb67b3dbce8cda0"},
{file = "ruff-0.6.9-py3-none-macosx_11_0_arm64.whl", hash = "sha256:53fd8ca5e82bdee8da7f506d7b03a261f24cd43d090ea9db9a1dc59d9313914c"}, {file = "ruff-0.7.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:37d0b619546103274e7f62643d14e1adcbccb242efda4e4bdb9544d7764782e9"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:645d7d8761f915e48a00d4ecc3686969761df69fb561dd914a773c1a8266e14e"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d59f0c3ee4d1a6787614e7135b72e21024875266101142a09a61439cb6e38a5"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eae02b700763e3847595b9d2891488989cac00214da7f845f4bcf2989007d577"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:44eb93c2499a169d49fafd07bc62ac89b1bc800b197e50ff4633aed212569299"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7d5ccc9e58112441de8ad4b29dcb7a86dc25c5f770e3c06a9d57e0e5eba48829"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6d0242ce53f3a576c35ee32d907475a8d569944c0407f91d207c8af5be5dae4e"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:417b81aa1c9b60b2f8edc463c58363075412866ae4e2b9ab0f690dc1e87ac1b5"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:6b6224af8b5e09772c2ecb8dc9f3f344c1aa48201c7f07e7315367f6dd90ac29"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c866b631f5fbce896a74a6e4383407ba7507b815ccc52bcedabb6810fdb3ef7"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c50f95a82b94421c964fae4c27c0242890a20fe67d203d127e84fbb8013855f5"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7b118afbb3202f5911486ad52da86d1d52305b59e7ef2031cea3425142b97d6f"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7f3eff9961b5d2644bcf1616c606e93baa2d6b349e8aa8b035f654df252c8c67"},
{file = "ruff-0.6.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a67267654edc23c97335586774790cde402fb6bbdb3c2314f1fc087dee320bfa"}, {file = "ruff-0.7.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8963cab06d130c4df2fd52c84e9f10d297826d2e8169ae0c798b6221be1d1d2"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:3ef0cc774b00fec123f635ce5c547dac263f6ee9fb9cc83437c5904183b55ceb"}, {file = "ruff-0.7.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:61b46049d6edc0e4317fb14b33bd693245281a3007288b68a3f5b74a22a0746d"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:12edd2af0c60fa61ff31cefb90aef4288ac4d372b4962c2864aeea3a1a2460c0"}, {file = "ruff-0.7.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:10ebce7696afe4644e8c1a23b3cf8c0f2193a310c18387c06e583ae9ef284de2"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:55bb01caeaf3a60b2b2bba07308a02fca6ab56233302406ed5245180a05c5625"}, {file = "ruff-0.7.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:3f36d56326b3aef8eeee150b700e519880d1aab92f471eefdef656fd57492aa2"},
{file = "ruff-0.6.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:925d26471fa24b0ce5a6cdfab1bb526fb4159952385f386bdcc643813d472039"}, {file = "ruff-0.7.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:5d024301109a0007b78d57ab0ba190087b43dce852e552734ebf0b0b85e4fb16"},
{file = "ruff-0.6.9-py3-none-win32.whl", hash = "sha256:eb61ec9bdb2506cffd492e05ac40e5bc6284873aceb605503d8494180d6fc84d"}, {file = "ruff-0.7.3-py3-none-win32.whl", hash = "sha256:4ba81a5f0c5478aa61674c5a2194de8b02652f17addf8dfc40c8937e6e7d79fc"},
{file = "ruff-0.6.9-py3-none-win_amd64.whl", hash = "sha256:785d31851c1ae91f45b3d8fe23b8ae4b5170089021fbb42402d811135f0b7117"}, {file = "ruff-0.7.3-py3-none-win_amd64.whl", hash = "sha256:588a9ff2fecf01025ed065fe28809cd5a53b43505f48b69a1ac7707b1b7e4088"},
{file = "ruff-0.6.9-py3-none-win_arm64.whl", hash = "sha256:a9641e31476d601f83cd602608739a0840e348bda93fec9f1ee816f8b6798b93"}, {file = "ruff-0.7.3-py3-none-win_arm64.whl", hash = "sha256:1713e2c5545863cdbfe2cbce21f69ffaf37b813bfd1fb3b90dc9a6f1963f5a8c"},
{file = "ruff-0.6.9.tar.gz", hash = "sha256:b076ef717a8e5bc819514ee1d602bbdca5b4420ae13a9cf61a0c0a4f53a2baa2"}, {file = "ruff-0.7.3.tar.gz", hash = "sha256:e1d1ba2e40b6e71a61b063354d04be669ab0d39c352461f3d789cac68b54a313"},
] ]
[[package]] [[package]]
@ -11005,4 +11078,4 @@ cffi = ["cffi (>=1.11)"]
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = ">=3.10,<3.13" python-versions = ">=3.10,<3.13"
content-hash = "f20bd678044926913dbbc24bd0cf22503a75817aa55f59457ff7822032139b77" content-hash = "2ba4b464eebc26598f290fa94713acc44c588f902176e6efa80622911d40f0ac"

View File

@ -122,6 +122,7 @@ celery = "~5.4.0"
chardet = "~5.1.0" chardet = "~5.1.0"
cohere = "~5.2.4" cohere = "~5.2.4"
dashscope = { version = "~1.17.0", extras = ["tokenizer"] } dashscope = { version = "~1.17.0", extras = ["tokenizer"] }
fal-client = "0.5.6"
flask = "~3.0.1" flask = "~3.0.1"
flask-compress = "~1.14" flask-compress = "~1.14"
flask-cors = "~4.0.0" flask-cors = "~4.0.0"
@ -278,4 +279,4 @@ pytest-mock = "~3.14.0"
optional = true optional = true
[tool.poetry.group.lint.dependencies] [tool.poetry.group.lint.dependencies]
dotenv-linter = "~0.5.0" dotenv-linter = "~0.5.0"
ruff = "~0.6.9" ruff = "~0.7.3"

View File

@ -1458,6 +1458,7 @@ class SegmentService:
pre_segment_data_list = [] pre_segment_data_list = []
segment_data_list = [] segment_data_list = []
keywords_list = [] keywords_list = []
position = max_position + 1 if max_position else 1
for segment_item in segments: for segment_item in segments:
content = segment_item["content"] content = segment_item["content"]
doc_id = str(uuid.uuid4()) doc_id = str(uuid.uuid4())
@ -1475,7 +1476,7 @@ class SegmentService:
document_id=document.id, document_id=document.id,
index_node_id=doc_id, index_node_id=doc_id,
index_node_hash=segment_hash, index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1, position=position,
content=content, content=content,
word_count=len(content), word_count=len(content),
tokens=tokens, tokens=tokens,
@ -1490,6 +1491,7 @@ class SegmentService:
increment_word_count += segment_document.word_count increment_word_count += segment_document.word_count
db.session.add(segment_document) db.session.add(segment_document)
segment_data_list.append(segment_document) segment_data_list.append(segment_document)
position += 1
pre_segment_data_list.append(segment_document) pre_segment_data_list.append(segment_document)
if "keywords" in segment_item: if "keywords" in segment_item:

View File

@ -1,4 +1,5 @@
import os import os
from collections import UserDict
from unittest.mock import MagicMock from unittest.mock import MagicMock
import pytest import pytest
@ -11,7 +12,7 @@ from pymochow.model.table import Table
from requests.adapters import HTTPAdapter from requests.adapters import HTTPAdapter
class AttrDict(dict): class AttrDict(UserDict):
def __getattr__(self, item): def __getattr__(self, item):
return self.get(item) return self.get(item)

View File

@ -1,4 +1,5 @@
import os import os
from collections import UserDict
from typing import Optional from typing import Optional
import pytest import pytest
@ -50,7 +51,7 @@ class MockIndex:
return AttrDict({"dimension": 1024}) return AttrDict({"dimension": 1024})
class AttrDict(dict): class AttrDict(UserDict):
def __getattr__(self, item): def __getattr__(self, item):
return self.get(item) return self.get(item)

View File

@ -140,10 +140,10 @@ def test_extract_text_from_plain_text():
assert text == "Hello, world!" assert text == "Hello, world!"
def tet_extract_text_from_plain_text_non_utf8(): def test_extract_text_from_plain_text_non_utf8():
import tempfile import tempfile
non_utf8_content = b"Hello world\xa9." # \xA9 represents © in Latin-1 non_utf8_content = b"Hello, world\xa9." # \xA9 represents © in Latin-1
with tempfile.NamedTemporaryFile(delete=True) as temp_file: with tempfile.NamedTemporaryFile(delete=True) as temp_file:
temp_file.write(non_utf8_content) temp_file.write(non_utf8_content)
temp_file.seek(0) temp_file.seek(0)

View File

@ -1,4 +1,5 @@
import os import os
from collections import UserDict
from unittest.mock import MagicMock from unittest.mock import MagicMock
import pytest import pytest
@ -14,7 +15,7 @@ from tests.unit_tests.oss.__mock.base import (
) )
class AttrDict(dict): class AttrDict(UserDict):
def __getattr__(self, item): def __getattr__(self, item):
return self.get(item) return self.get(item)

View File

@ -1,5 +1,5 @@
# base image # base image
FROM node:20.11-alpine3.19 AS base FROM node:20-alpine3.20 AS base
LABEL maintainer="takatost@gmail.com" LABEL maintainer="takatost@gmail.com"
# if you located in China, you can use aliyun mirror to speed up # if you located in China, you can use aliyun mirror to speed up

View File

@ -86,8 +86,8 @@ const translation = {
agenteLogDetail: { agenteLogDetail: {
agentMode: 'Modo Agente', agentMode: 'Modo Agente',
toolUsed: 'Ferramenta usada', toolUsed: 'Ferramenta usada',
iterações: 'Iterações', iterations: 'Iterações',
iteração: 'Iteração', iteration: 'Iteração',
finalProcessing: 'Processamento Final', finalProcessing: 'Processamento Final',
}, },
agentLogDetail: { agentLogDetail: {