Compare commits

...

27 Commits

Author SHA1 Message Date
-LAN-
72c1b7d1c2 feat(llm-panel): refine variable filtering logic
Introduce `filterJinjia2InputVar` to enhance variable filtering, specifically excluding `arrayFile` types from Jinja2 input variables. This adjustment improves the management of variable types, aligning with expected input capacities and ensuring more reliable configurations. Additionally, support for file variables is enabled in relevant components, broadening functionality and user options.
2024-11-15 01:13:51 +08:00
-LAN-
157aee8878 refactor(core): decouple LLMNode prompt handling
Moved prompt handling functions out of the `LLMNode` class to improve modularity and separation of concerns. This refactor allows better reuse and testing of prompt-related functions. Adjusted existing logic to fetch queries and handle context and memory configurations more effectively. Updated tests to align with the new structure and ensure continued functionality.
2024-11-15 01:13:51 +08:00
-LAN-
3439c4b12a refactor(node.py): streamline template rendering
Removed the `_render_basic_message` function and integrated its logic directly into the `LLMNode` class. This reduces redundancy and simplifies the handling of message templates by utilizing `convert_template` more directly. This change enhances code readability and maintainability.
2024-11-15 01:13:51 +08:00
-LAN-
bc331b9a41 feat(config-prompt): add support for file variables
Extended the `ConfigPromptItem` component to support file variables by including the `isSupportFileVar` prop. Updated `useConfig` hooks to accept `arrayFile` variable types for both input and memory prompt filtering. This enhancement allows handling of file data types seamlessly, improving flexibility in configuring prompts.
2024-11-15 01:13:51 +08:00
-LAN-
c3b5d1994a fix(file-manager): enforce file extension presence
Added a check to ensure that files have an extension before processing to avoid potential errors. Updated unit tests to reflect this requirement by including extensions in test data. This prevents exceptions from being raised due to missing file extension information.
2024-11-15 01:13:51 +08:00
-LAN-
87137ad97a feat: add support for document, video, and audio content
Expanded the system to handle document types across different modules and introduced video and audio content handling in model features. Adjusted the prompt message logic to conditionally process content based on available features, enhancing flexibility in media processing. Added comprehensive error handling in `LLMNode` for better runtime resilience. Updated YAML configuration and unit tests to reflect these changes.
2024-11-15 01:13:51 +08:00
-LAN-
14205a7756 fix: ensure workflow run persistence before refresh
Adds the workflow run object to the database session to guarantee it is persisted prior to refreshing its state. This change resolves potential issues with data consistency and integrity when the workflow run is accessed after operations. References issue #123 for more context.
2024-11-15 01:13:51 +08:00
-LAN-
e1ccb1f8d7 fix(file-uploader): resolve file extension logic order
Rearranged the logic in `getFileExtension` to first check for a valid `fileName` before considering `fileMimetype` or `isRemote`. This change ensures that the function prioritizes extracting extensions from file names directly, improving accuracy and handling edge cases more effectively. This update may prevent incorrect file extensions when mimetype is prioritized incorrectly.

Resolves #123.
2024-11-15 01:13:51 +08:00
-LAN-
2111196213 feat: enhance image handling in prompt processing
Updated image processing logic to check for model support of vision features, preventing errors when handling images with models that do not support them. Added a test scenario to validate behavior when vision features are absent. This ensures robust image handling and avoids unexpected behavior during image-related prompts.
2024-11-15 01:13:51 +08:00
-LAN-
eef3a3c7a9 fix(node): handle empty text segments gracefully
Ensure that messages are only created from non-empty text segments, preventing potential issues with empty content.

test: add scenario for file variable handling

Introduce a test case for scenarios involving prompt templates with file variables, particularly images, to improve reliability and test coverage. Updated `LLMNodeTestScenario` to use `Sequence` and `Mapping` for more flexible configurations.

Closes #123, relates to #456.
2024-11-15 01:13:51 +08:00
-LAN-
d03e7e0a8f feat(tests): refactor LLMNode tests for clarity
Refactor test scenarios in LLMNode unit tests by introducing a new `LLMNodeTestScenario` class to enhance readability and consistency. This change simplifies the test case management by encapsulating scenario data and reduces redundancy in specifying test configurations. Improves test clarity and maintainability by using a structured approach.
2024-11-15 01:13:51 +08:00
-LAN-
37ed7b3e39 refactor(tests): streamline LLM node prompt message tests
Refactored LLM node tests to enhance clarity and maintainability by creating test scenarios for different file input combinations. This restructuring replaces repetitive code with a more concise approach, improving test coverage and readability.

No functional code changes were made.

References: #123, #456
2024-11-15 01:13:51 +08:00
-LAN-
987105bb27 Simplify test setup in LLM node tests
Replaced redundant variables in test setup to streamline and align usage of fake data, enhancing readability and maintainability. Adjusted image URL variables to utilize consistent references, ensuring uniformity across test configurations. Also, corrected context variable naming for clarity. No functional impact, purely a refactor for code clarity.
2024-11-15 01:13:51 +08:00
-LAN-
600d111e8f feat(llm_node): allow to use image file directly in the prompt. 2024-11-15 01:13:51 +08:00
-LAN-
2a58cc59c0 Remove unnecessary data from log and text properties
Updated the log and text properties in segments to return
empty strings instead of the segment value. This change
prevents potential leakage of sensitive data by ensuring
only non-sensitive information is logged or transformed
into text. Addresses potential security and privacy concerns.
2024-11-15 01:13:51 +08:00
-LAN-
9d3e688e38 refactor(model_manager): update parameter type for flexibility
- Changed 'prompt_messages' parameter from list to Sequence for broader input type compatibility.
2024-11-15 01:13:51 +08:00
-LAN-
97beb1c0c7 refactor(memory): use Sequence instead of list for prompt messages
- Improved flexibility by using Sequence instead of list, allowing for broader compatibility with different types of sequences.
- Helps future-proof the method signature by leveraging the more generic Sequence type.
2024-11-15 01:13:51 +08:00
-LAN-
f16e6e06cd fix(dependencies): update Faker version constraint
- Changed the Faker version from caret constraint to tilde constraint for compatibility.
- Updated poetry.lock for changes in pyproject.toml content.
2024-11-15 01:13:51 +08:00
-LAN-
0b587deef4 chore(config): remove unnecessary 'frozen' parameter for test
- Simplified app configuration by removing the 'frozen' parameter since it is no longer needed.
- Ensures more flexible handling of config attributes.
2024-11-15 01:13:51 +08:00
-LAN-
2cb119addf refactor(model_runtime): use Sequence for content in PromptMessage
- Replaced list with Sequence for more flexible content type.
- Improved type consistency by importing from collections.abc.
2024-11-15 01:13:51 +08:00
-LAN-
8ddfba60a5 refactor(prompt): enhance type flexibility for prompt messages
- Changed input type from list to Sequence for prompt messages to allow more flexible input types.
- Improved compatibility with functions expecting different iterable types.
2024-11-15 01:13:51 +08:00
-LAN-
1c143c89a8 fix(tests): update Azure Rerank Model usage and clean imports 2024-11-15 01:13:51 +08:00
-LAN-
69fd050914 feat(errors): add new error classes for unsupported prompt types and memory role prefix requirements 2024-11-15 01:13:51 +08:00
-LAN-
dac51ef381 refactor: update jinja2_variables and prompt_config to use Sequence and add validators for None handling 2024-11-15 01:13:51 +08:00
-LAN-
740ff15cab refactor: update stop parameter type to use Sequence instead of list 2024-11-15 01:13:51 +08:00
-LAN-
27dff4c980 refactor(converter): simplify model credentials validation logic 2024-11-15 01:13:51 +08:00
-LAN-
9bd0320e4b chore(deps): add faker 2024-11-15 01:13:51 +08:00
27 changed files with 958 additions and 218 deletions

View File

@ -27,7 +27,6 @@ class DifyConfig(
# read from dotenv format config file
env_file=".env",
env_file_encoding="utf-8",
frozen=True,
# ignore extra attributes
extra="ignore",
)

View File

@ -11,7 +11,7 @@ from core.provider_manager import ProviderManager
class ModelConfigConverter:
@classmethod
def convert(cls, app_config: EasyUIBasedAppConfig, skip_check: bool = False) -> ModelConfigWithCredentialsEntity:
def convert(cls, app_config: EasyUIBasedAppConfig) -> ModelConfigWithCredentialsEntity:
"""
Convert app model config dict to entity.
:param app_config: app config
@ -38,27 +38,23 @@ class ModelConfigConverter:
)
if model_credentials is None:
if not skip_check:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
else:
model_credentials = {}
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
if not skip_check:
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_config.model, model_type=ModelType.LLM
)
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model is None:
model_name = model_config.model
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = model_config.parameters
@ -76,7 +72,7 @@ class ModelConfigConverter:
model_schema = model_type_instance.get_model_schema(model_config.model, model_credentials)
if not skip_check and not model_schema:
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
return ModelConfigWithCredentialsEntity(

View File

@ -217,6 +217,7 @@ class WorkflowCycleManage:
).total_seconds()
db.session.commit()
db.session.add(workflow_run)
db.session.refresh(workflow_run)
db.session.close()

View File

@ -74,6 +74,8 @@ def to_prompt_message_content(
data = _to_url(f)
else:
data = _to_base64_data_string(f)
if f.extension is None:
raise ValueError("Missing file extension")
return VideoPromptMessageContent(data=data, format=f.extension.lstrip("."))
case _:
raise ValueError("file type f.type is not supported")

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import Optional
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
@ -27,7 +28,7 @@ class TokenBufferMemory:
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> list[PromptMessage]:
) -> Sequence[PromptMessage]:
"""
Get history prompt messages.
:param max_token_limit: max token limit

View File

@ -100,10 +100,10 @@ class ModelInstance:
def invoke_llm(
self,
prompt_messages: list[PromptMessage],
prompt_messages: Sequence[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Sequence[PromptMessageTool] | None = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -1,4 +1,5 @@
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Optional
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
@ -31,7 +32,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -60,7 +61,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
):
@ -90,7 +91,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:
@ -120,7 +121,7 @@ class Callback(ABC):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> None:

View File

@ -1,4 +1,5 @@
from abc import ABC
from collections.abc import Sequence
from enum import Enum
from typing import Optional
@ -57,6 +58,7 @@ class PromptMessageContentType(Enum):
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
DOCUMENT = "document"
class PromptMessageContent(BaseModel):
@ -107,7 +109,7 @@ class PromptMessage(ABC, BaseModel):
"""
role: PromptMessageRole
content: Optional[str | list[PromptMessageContent]] = None
content: Optional[str | Sequence[PromptMessageContent]] = None
name: Optional[str] = None
def is_empty(self) -> bool:

View File

@ -87,6 +87,9 @@ class ModelFeature(Enum):
AGENT_THOUGHT = "agent-thought"
VISION = "vision"
STREAM_TOOL_CALL = "stream-tool-call"
DOCUMENT = "document"
VIDEO = "video"
AUDIO = "audio"
class DefaultParameterName(str, Enum):

View File

@ -2,7 +2,7 @@ import logging
import re
import time
from abc import abstractmethod
from collections.abc import Generator, Mapping
from collections.abc import Generator, Mapping, Sequence
from typing import Optional, Union
from pydantic import ConfigDict
@ -48,7 +48,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: Optional[dict] = None,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -169,7 +169,7 @@ class LargeLanguageModel(AIModel):
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -212,7 +212,7 @@ if you are not sure about the structure.
)
model_parameters.pop("response_format")
stop = stop or []
stop = list(stop) if stop is not None else []
stop.extend(["\n```", "```\n"])
block_prompts = block_prompts.replace("{{block}}", code_block)
@ -408,7 +408,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -479,7 +479,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
@ -601,7 +601,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -647,7 +647,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -694,7 +694,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,
@ -742,7 +742,7 @@ if you are not sure about the structure.
prompt_messages: list[PromptMessage],
model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None,
stop: Optional[list[str]] = None,
stop: Optional[Sequence[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: Optional[list[Callback]] = None,

View File

@ -8,6 +8,7 @@ features:
- agent-thought
- stream-tool-call
- vision
- audio
model_properties:
mode: chat
context_size: 128000

View File

@ -1,3 +1,4 @@
from collections.abc import Sequence
from typing import cast
from core.model_runtime.entities import (
@ -14,7 +15,7 @@ from core.prompt.simple_prompt_transform import ModelMode
class PromptMessageUtil:
@staticmethod
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: list[PromptMessage]) -> list[dict]:
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: Sequence[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param model_mode: model mode

View File

@ -118,11 +118,11 @@ class FileSegment(Segment):
@property
def log(self) -> str:
return str(self.value)
return ""
@property
def text(self) -> str:
return str(self.value)
return ""
class ArrayAnySegment(ArraySegment):
@ -155,3 +155,11 @@ class ArrayFileSegment(ArraySegment):
for item in self.value:
items.append(item.markdown)
return "\n".join(items)
@property
def log(self) -> str:
return ""
@property
def text(self) -> str:
return ""

View File

@ -39,7 +39,14 @@ class VisionConfig(BaseModel):
class PromptConfig(BaseModel):
jinja2_variables: Optional[list[VariableSelector]] = None
jinja2_variables: Sequence[VariableSelector] = Field(default_factory=list)
@field_validator("jinja2_variables", mode="before")
@classmethod
def convert_none_jinja2_variables(cls, v: Any):
if v is None:
return []
return v
class LLMNodeChatModelMessage(ChatModelMessage):
@ -53,7 +60,14 @@ class LLMNodeCompletionModelPromptTemplate(CompletionModelPromptTemplate):
class LLMNodeData(BaseNodeData):
model: ModelConfig
prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate
prompt_config: Optional[PromptConfig] = None
prompt_config: PromptConfig = Field(default_factory=PromptConfig)
memory: Optional[MemoryConfig] = None
context: ContextConfig
vision: VisionConfig = Field(default_factory=VisionConfig)
@field_validator("prompt_config", mode="before")
@classmethod
def convert_none_prompt_config(cls, v: Any):
if v is None:
return PromptConfig()
return v

View File

@ -24,3 +24,11 @@ class LLMModeRequiredError(LLMNodeError):
class NoPromptFoundError(LLMNodeError):
"""Raised when no prompt is found in the LLM configuration."""
class NotSupportedPromptTypeError(LLMNodeError):
"""Raised when the prompt type is not supported."""
class MemoryRolePrefixRequiredError(LLMNodeError):
"""Raised when memory role prefix is required for completion model."""

View File

@ -1,4 +1,5 @@
import json
import logging
from collections.abc import Generator, Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
@ -6,21 +7,26 @@ from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEnti
from core.entities.model_entities import ModelStatus
from core.entities.provider_entities import QuotaUnit
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file import FileType, file_manager
from core.helper.code_executor import CodeExecutor, CodeLanguage
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities import (
AudioPromptMessageContent,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
TextPromptMessageContent,
VideoPromptMessageContent,
)
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessageRole,
SystemPromptMessage,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.variables import (
@ -32,8 +38,9 @@ from core.variables import (
ObjectSegment,
StringSegment,
)
from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
from core.workflow.entities.variable_entities import VariableSelector
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.event import InNodeEvent
from core.workflow.nodes.base import BaseNode
@ -62,14 +69,18 @@ from .exc import (
InvalidVariableTypeError,
LLMModeRequiredError,
LLMNodeError,
MemoryRolePrefixRequiredError,
ModelNotExistError,
NoPromptFoundError,
NotSupportedPromptTypeError,
VariableNotFoundError,
)
if TYPE_CHECKING:
from core.file.models import File
logger = logging.getLogger(__name__)
class LLMNode(BaseNode[LLMNodeData]):
_node_data_cls = LLMNodeData
@ -123,17 +134,13 @@ class LLMNode(BaseNode[LLMNodeData]):
# fetch prompt messages
if self.node_data.memory:
query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
if not query:
raise VariableNotFoundError("Query not found")
query = query.text
query = self.node_data.memory.query_prompt_template
else:
query = None
prompt_messages, stop = self._fetch_prompt_messages(
system_query=query,
inputs=inputs,
files=files,
user_query=query,
user_files=files,
context=context,
memory=memory,
model_config=model_config,
@ -141,6 +148,8 @@ class LLMNode(BaseNode[LLMNodeData]):
memory_config=self.node_data.memory,
vision_enabled=self.node_data.vision.enabled,
vision_detail=self.node_data.vision.configs.detail,
variable_pool=self.graph_runtime_state.variable_pool,
jinja2_variables=self.node_data.prompt_config.jinja2_variables,
)
process_data = {
@ -181,6 +190,17 @@ class LLMNode(BaseNode[LLMNodeData]):
)
)
return
except Exception as e:
logger.exception(f"Node {self.node_id} failed to run: {e}")
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
inputs=node_inputs,
process_data=process_data,
)
)
return
outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
@ -203,8 +223,8 @@ class LLMNode(BaseNode[LLMNodeData]):
self,
node_data_model: ModelConfig,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: Optional[list[str]] = None,
prompt_messages: Sequence[PromptMessage],
stop: Optional[Sequence[str]] = None,
) -> Generator[NodeEvent, None, None]:
db.session.close()
@ -519,9 +539,8 @@ class LLMNode(BaseNode[LLMNodeData]):
def _fetch_prompt_messages(
self,
*,
system_query: str | None = None,
inputs: dict[str, str] | None = None,
files: Sequence["File"],
user_query: str | None = None,
user_files: Sequence["File"],
context: str | None = None,
memory: TokenBufferMemory | None = None,
model_config: ModelConfigWithCredentialsEntity,
@ -529,58 +548,146 @@ class LLMNode(BaseNode[LLMNodeData]):
memory_config: MemoryConfig | None = None,
vision_enabled: bool = False,
vision_detail: ImagePromptMessageContent.DETAIL,
) -> tuple[list[PromptMessage], Optional[list[str]]]:
inputs = inputs or {}
variable_pool: VariablePool,
jinja2_variables: Sequence[VariableSelector],
) -> tuple[Sequence[PromptMessage], Optional[Sequence[str]]]:
prompt_messages = []
prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
prompt_messages = prompt_transform.get_prompt(
prompt_template=prompt_template,
inputs=inputs,
query=system_query or "",
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config,
)
stop = model_config.stop
if isinstance(prompt_template, list):
# For chat model
prompt_messages.extend(
_handle_list_messages(
messages=prompt_template,
context=context,
jinja2_variables=jinja2_variables,
variable_pool=variable_pool,
vision_detail_config=vision_detail,
)
)
# Get memory messages for chat mode
memory_messages = _handle_memory_chat_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Extend prompt_messages with memory messages
prompt_messages.extend(memory_messages)
# Add current query to the prompt messages
if user_query:
message = LLMNodeChatModelMessage(
text=user_query,
role=PromptMessageRole.USER,
edition_type="basic",
)
prompt_messages.extend(
_handle_list_messages(
messages=[message],
context="",
jinja2_variables=[],
variable_pool=variable_pool,
vision_detail_config=vision_detail,
)
)
elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
# For completion model
prompt_messages.extend(
_handle_completion_template(
template=prompt_template,
context=context,
jinja2_variables=jinja2_variables,
variable_pool=variable_pool,
)
)
# Get memory text for completion model
memory_text = _handle_memory_completion_mode(
memory=memory,
memory_config=memory_config,
model_config=model_config,
)
# Insert histories into the prompt
prompt_content = prompt_messages[0].content
if "#histories#" in prompt_content:
prompt_content = prompt_content.replace("#histories#", memory_text)
else:
prompt_content = memory_text + "\n" + prompt_content
prompt_messages[0].content = prompt_content
# Add current query to the prompt message
if user_query:
prompt_content = prompt_messages[0].content.replace("#sys.query#", user_query)
prompt_messages[0].content = prompt_content
else:
errmsg = f"Prompt type {type(prompt_template)} is not supported"
logger.warning(errmsg)
raise NotSupportedPromptTypeError(errmsg)
if vision_enabled and user_files:
file_prompts = []
for file in user_files:
file_prompt = file_manager.to_prompt_message_content(file, image_detail_config=vision_detail)
file_prompts.append(file_prompt)
if (
len(prompt_messages) > 0
and isinstance(prompt_messages[-1], UserPromptMessage)
and isinstance(prompt_messages[-1].content, list)
):
prompt_messages[-1] = UserPromptMessage(content=prompt_messages[-1].content + file_prompts)
else:
prompt_messages.append(UserPromptMessage(content=file_prompts))
# Filter prompt messages
filtered_prompt_messages = []
for prompt_message in prompt_messages:
if prompt_message.is_empty():
continue
if not isinstance(prompt_message.content, str):
if isinstance(prompt_message.content, list):
prompt_message_content = []
for content_item in prompt_message.content or []:
# Skip image if vision is disabled
if not vision_enabled and content_item.type == PromptMessageContentType.IMAGE:
for content_item in prompt_message.content:
# Skip content if features are not defined
if not model_config.model_schema.features:
if content_item.type != PromptMessageContentType.TEXT:
continue
prompt_message_content.append(content_item)
continue
if isinstance(content_item, ImagePromptMessageContent):
# Override vision config if LLM node has vision config,
# cuz vision detail is related to the configuration from FileUpload feature.
content_item.detail = vision_detail
prompt_message_content.append(content_item)
elif isinstance(
content_item, TextPromptMessageContent | AudioPromptMessageContent | VideoPromptMessageContent
# Skip content if corresponding feature is not supported
if (
(
content_item.type == PromptMessageContentType.IMAGE
and ModelFeature.VISION not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.DOCUMENT
and ModelFeature.DOCUMENT not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.VIDEO
and ModelFeature.VIDEO not in model_config.model_schema.features
)
or (
content_item.type == PromptMessageContentType.AUDIO
and ModelFeature.AUDIO not in model_config.model_schema.features
)
):
prompt_message_content.append(content_item)
if len(prompt_message_content) > 1:
prompt_message.content = prompt_message_content
elif (
len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
):
continue
prompt_message_content.append(content_item)
if len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT:
prompt_message.content = prompt_message_content[0].data
else:
prompt_message.content = prompt_message_content
if prompt_message.is_empty():
continue
filtered_prompt_messages.append(prompt_message)
if not filtered_prompt_messages:
if len(filtered_prompt_messages) == 0:
raise NoPromptFoundError(
"No prompt found in the LLM configuration. "
"Please ensure a prompt is properly configured before proceeding."
)
stop = model_config.stop
return filtered_prompt_messages, stop
@classmethod
@ -715,3 +822,198 @@ class LLMNode(BaseNode[LLMNodeData]):
}
},
}
def _combine_text_message_with_role(*, text: str, role: PromptMessageRole):
match role:
case PromptMessageRole.USER:
return UserPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.ASSISTANT:
return AssistantPromptMessage(content=[TextPromptMessageContent(data=text)])
case PromptMessageRole.SYSTEM:
return SystemPromptMessage(content=[TextPromptMessageContent(data=text)])
raise NotImplementedError(f"Role {role} is not supported")
def _render_jinja2_message(
*,
template: str,
jinjia2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
):
if not template:
return ""
jinjia2_inputs = {}
for jinja2_variable in jinjia2_variables:
variable = variable_pool.get(jinja2_variable.value_selector)
jinjia2_inputs[jinja2_variable.variable] = variable.to_object() if variable else ""
code_execute_resp = CodeExecutor.execute_workflow_code_template(
language=CodeLanguage.JINJA2,
code=template,
inputs=jinjia2_inputs,
)
result_text = code_execute_resp["result"]
return result_text
def _handle_list_messages(
*,
messages: Sequence[LLMNodeChatModelMessage],
context: Optional[str],
jinja2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
vision_detail_config: ImagePromptMessageContent.DETAIL,
) -> Sequence[PromptMessage]:
prompt_messages = []
for message in messages:
if message.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=message.jinja2_text or "",
jinjia2_variables=jinja2_variables,
variable_pool=variable_pool,
)
prompt_message = _combine_text_message_with_role(text=result_text, role=message.role)
prompt_messages.append(prompt_message)
else:
# Get segment group from basic message
if context:
template = message.text.replace("{#context#}", context)
else:
template = message.text
segment_group = variable_pool.convert_template(template)
# Process segments for images
file_contents = []
for segment in segment_group.value:
if isinstance(segment, ArrayFileSegment):
for file in segment.value:
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=vision_detail_config
)
file_contents.append(file_content)
if isinstance(segment, FileSegment):
file = segment.value
if file.type in {FileType.IMAGE, FileType.VIDEO, FileType.AUDIO}:
file_content = file_manager.to_prompt_message_content(
file, image_detail_config=vision_detail_config
)
file_contents.append(file_content)
# Create message with text from all segments
plain_text = segment_group.text
if plain_text:
prompt_message = _combine_text_message_with_role(text=plain_text, role=message.role)
prompt_messages.append(prompt_message)
if file_contents:
# Create message with image contents
prompt_message = UserPromptMessage(content=file_contents)
prompt_messages.append(prompt_message)
return prompt_messages
def _calculate_rest_token(
*, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity
) -> int:
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
if model_context_tokens:
model_instance = ModelInstance(
provider_model_bundle=model_config.provider_model_bundle, model=model_config.model
)
curr_message_tokens = model_instance.get_llm_num_tokens(prompt_messages)
max_tokens = 0
for parameter_rule in model_config.model_schema.parameter_rules:
if parameter_rule.name == "max_tokens" or (
parameter_rule.use_template and parameter_rule.use_template == "max_tokens"
):
max_tokens = (
model_config.parameters.get(parameter_rule.name)
or model_config.parameters.get(str(parameter_rule.use_template))
or 0
)
rest_tokens = model_context_tokens - max_tokens - curr_message_tokens
rest_tokens = max(rest_tokens, 0)
return rest_tokens
def _handle_memory_chat_mode(
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> Sequence[PromptMessage]:
memory_messages = []
# Get messages from memory for chat model
if memory and memory_config:
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
memory_messages = memory.get_history_prompt_messages(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
)
return memory_messages
def _handle_memory_completion_mode(
*,
memory: TokenBufferMemory | None,
memory_config: MemoryConfig | None,
model_config: ModelConfigWithCredentialsEntity,
) -> str:
memory_text = ""
# Get history text from memory for completion model
if memory and memory_config:
rest_tokens = _calculate_rest_token(prompt_messages=[], model_config=model_config)
if not memory_config.role_prefix:
raise MemoryRolePrefixRequiredError("Memory role prefix is required for completion model.")
memory_text = memory.get_history_prompt_text(
max_token_limit=rest_tokens,
message_limit=memory_config.window.size if memory_config.window.enabled else None,
human_prefix=memory_config.role_prefix.user,
ai_prefix=memory_config.role_prefix.assistant,
)
return memory_text
def _handle_completion_template(
*,
template: LLMNodeCompletionModelPromptTemplate,
context: Optional[str],
jinja2_variables: Sequence[VariableSelector],
variable_pool: VariablePool,
) -> Sequence[PromptMessage]:
"""Handle completion template processing outside of LLMNode class.
Args:
template: The completion model prompt template
context: Optional context string
jinja2_variables: Variables for jinja2 template rendering
variable_pool: Variable pool for template conversion
Returns:
Sequence of prompt messages
"""
prompt_messages = []
if template.edition_type == "jinja2":
result_text = _render_jinja2_message(
template=template.jinja2_text or "",
jinjia2_variables=jinja2_variables,
variable_pool=variable_pool,
)
else:
if context:
template_text = template.text.replace("{#context#}", context)
else:
template_text = template.text
result_text = variable_pool.convert_template(template_text).text
prompt_message = _combine_text_message_with_role(text=result_text, role=PromptMessageRole.USER)
prompt_messages.append(prompt_message)
return prompt_messages

View File

@ -86,12 +86,14 @@ class QuestionClassifierNode(LLMNode):
)
prompt_messages, stop = self._fetch_prompt_messages(
prompt_template=prompt_template,
system_query=query,
user_query=query,
memory=memory,
model_config=model_config,
files=files,
user_files=files,
vision_enabled=node_data.vision.enabled,
vision_detail=node_data.vision.configs.detail,
variable_pool=variable_pool,
jinja2_variables=[],
)
# handle invoke result

17
api/poetry.lock generated
View File

@ -2411,6 +2411,21 @@ files = [
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "faker"
version = "32.1.0"
description = "Faker is a Python package that generates fake data for you."
optional = false
python-versions = ">=3.8"
files = [
{file = "Faker-32.1.0-py3-none-any.whl", hash = "sha256:c77522577863c264bdc9dad3a2a750ad3f7ee43ff8185072e482992288898814"},
{file = "faker-32.1.0.tar.gz", hash = "sha256:aac536ba04e6b7beb2332c67df78485fc29c1880ff723beac6d1efd45e2f10f5"},
]
[package.dependencies]
python-dateutil = ">=2.4"
typing-extensions = "*"
[[package]]
name = "fastapi"
version = "0.115.4"
@ -11005,4 +11020,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.0"
python-versions = ">=3.10,<3.13"
content-hash = "f20bd678044926913dbbc24bd0cf22503a75817aa55f59457ff7822032139b77"
content-hash = "0ab603323ea1d83690d4ee61e6d199a2bca6f3e2cc4b454a4ebf99aa6f6907bd"

View File

@ -265,6 +265,7 @@ weaviate-client = "~3.21.0"
optional = true
[tool.poetry.group.dev.dependencies]
coverage = "~7.2.4"
faker = "~32.1.0"
pytest = "~8.3.2"
pytest-benchmark = "~4.0.0"
pytest-env = "~1.1.3"

View File

@ -11,7 +11,6 @@ from core.model_runtime.entities.message_entities import (
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.llm.llm import AzureAIStudioLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.azure_ai_studio import setup_azure_ai_studio_mock
@pytest.mark.parametrize("setup_azure_ai_studio_mock", [["chat"]], indirect=True)

View File

@ -4,29 +4,21 @@ import pytest
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureAIStudioRerankModel
from core.model_runtime.model_providers.azure_ai_studio.rerank.rerank import AzureRerankModel
def test_validate_credentials():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model="azure-ai-studio-rerank-v1",
credentials={"api_key": "invalid_key", "api_base": os.getenv("AZURE_AI_STUDIO_API_BASE")},
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
def test_invoke_model():
model = AzureAIStudioRerankModel()
model = AzureRerankModel()
result = model.invoke(
model="azure-ai-studio-rerank-v1",

View File

@ -1,125 +1,484 @@
from collections.abc import Sequence
from typing import Optional
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom
from configs import dify_config
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import CustomConfiguration, SystemConfiguration
from core.file import File, FileTransferMethod, FileType
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageRole,
SystemPromptMessage,
TextPromptMessageContent,
UserPromptMessage,
)
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelFeature, ModelType, ProviderModel
from core.model_runtime.entities.provider_entities import ConfigurateMethod, ProviderEntity
from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.variables import ArrayAnySegment, ArrayFileSegment, NoneSegment
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.graph_engine import Graph, GraphInitParams, GraphRuntimeState
from core.workflow.nodes.answer import AnswerStreamGenerateRoute
from core.workflow.nodes.end import EndStreamParam
from core.workflow.nodes.llm.entities import ContextConfig, LLMNodeData, ModelConfig, VisionConfig, VisionConfigOptions
from core.workflow.nodes.llm.entities import (
ContextConfig,
LLMNodeChatModelMessage,
LLMNodeData,
ModelConfig,
VisionConfig,
VisionConfigOptions,
)
from core.workflow.nodes.llm.node import LLMNode
from models.enums import UserFrom
from models.provider import ProviderType
from models.workflow import WorkflowType
from tests.unit_tests.core.workflow.nodes.llm.test_scenarios import LLMNodeTestScenario
class TestLLMNode:
@pytest.fixture
def llm_node(self):
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
class MockTokenBufferMemory:
def __init__(self, history_messages=None):
self.history_messages = history_messages or []
def test_fetch_files_with_file_segment(self, llm_node):
file = File(
def get_history_prompt_messages(
self, max_token_limit: int = 2000, message_limit: Optional[int] = None
) -> Sequence[PromptMessage]:
if message_limit is not None:
return self.history_messages[-message_limit * 2 :]
return self.history_messages
@pytest.fixture
def llm_node():
data = LLMNodeData(
title="Test LLM",
model=ModelConfig(provider="openai", name="gpt-3.5-turbo", mode="chat", completion_params={}),
prompt_template=[],
memory=None,
context=ContextConfig(enabled=False),
vision=VisionConfig(
enabled=True,
configs=VisionConfigOptions(
variable_selector=["sys", "files"],
detail=ImagePromptMessageContent.DETAIL.HIGH,
),
),
)
variable_pool = VariablePool(
system_variables={},
user_inputs={},
)
node = LLMNode(
id="1",
config={
"id": "1",
"data": data.model_dump(),
},
graph_init_params=GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config={},
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.SERVICE_API,
call_depth=0,
),
graph=Graph(
root_node_id="1",
answer_stream_generate_routes=AnswerStreamGenerateRoute(
answer_dependencies={},
answer_generate_route={},
),
end_stream_param=EndStreamParam(
end_dependencies={},
end_stream_variable_selector_mapping={},
),
),
graph_runtime_state=GraphRuntimeState(
variable_pool=variable_pool,
start_at=0,
),
)
return node
@pytest.fixture
def model_config():
# Create actual provider and model type instances
model_provider_factory = ModelProviderFactory()
provider_instance = model_provider_factory.get_provider_instance("openai")
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
# Create a ProviderModelBundle
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id="1",
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(enabled=False),
custom_configuration=CustomConfiguration(provider=None),
model_settings=[],
),
provider_instance=provider_instance,
model_type_instance=model_type_instance,
)
# Create and return a ModelConfigWithCredentialsEntity
return ModelConfigWithCredentialsEntity(
provider="openai",
model="gpt-3.5-turbo",
model_schema=AIModelEntity(
model="gpt-3.5-turbo",
label=I18nObject(en_US="GPT-3.5 Turbo"),
model_type=ModelType.LLM,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={},
),
mode="chat",
credentials={},
parameters={},
provider_model_bundle=provider_model_bundle,
)
def test_fetch_files_with_file_segment(llm_node):
file = File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
def test_fetch_files_with_array_file_segment(llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test.jpg",
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
def test_fetch_files_with_none_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_array_any_segment(llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_files_with_non_existent_variable(llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__vison_disabled(faker, llm_node, model_config):
prompt_template = []
llm_node.node_data.prompt_template = prompt_template
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], file)
]
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == [file]
fake_query = faker.sentence()
def test_fetch_files_with_array_file_segment(self, llm_node):
files = [
File(
id="1",
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="1",
),
File(
id="2",
tenant_id="test",
type=FileType.IMAGE,
filename="test2.jpg",
transfer_method=FileTransferMethod.LOCAL_FILE,
related_id="2",
),
]
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayFileSegment(value=files))
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=fake_query,
user_files=files,
context=None,
memory=None,
model_config=model_config,
prompt_template=prompt_template,
memory_config=None,
vision_enabled=False,
vision_detail=fake_vision_detail,
variable_pool=llm_node.graph_runtime_state.variable_pool,
jinja2_variables=[],
)
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == files
assert prompt_messages == [UserPromptMessage(content=fake_query)]
def test_fetch_files_with_none_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], NoneSegment())
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
def test_fetch_prompt_messages__basic(faker, llm_node, model_config):
# Setup dify config
dify_config.MULTIMODAL_SEND_IMAGE_FORMAT = "url"
dify_config.MULTIMODAL_SEND_VIDEO_FORMAT = "url"
def test_fetch_files_with_array_any_segment(self, llm_node):
llm_node.graph_runtime_state.variable_pool.add(["sys", "files"], ArrayAnySegment(value=[]))
# Generate fake values for prompt template
fake_assistant_prompt = faker.sentence()
fake_query = faker.sentence()
fake_context = faker.sentence()
fake_window_size = faker.random_int(min=1, max=3)
fake_vision_detail = faker.random_element(
[ImagePromptMessageContent.DETAIL.HIGH, ImagePromptMessageContent.DETAIL.LOW]
)
fake_remote_url = faker.url()
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup mock memory with history messages
mock_history = [
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
UserPromptMessage(content=faker.sentence()),
AssistantPromptMessage(content=faker.sentence()),
]
def test_fetch_files_with_non_existent_variable(self, llm_node):
result = llm_node._fetch_files(selector=["sys", "files"])
assert result == []
# Setup memory configuration
memory_config = MemoryConfig(
role_prefix=MemoryConfig.RolePrefix(user="Human", assistant="Assistant"),
window=MemoryConfig.WindowConfig(enabled=True, size=fake_window_size),
query_prompt_template=None,
)
memory = MockTokenBufferMemory(history_messages=mock_history)
# Test scenarios covering different file input combinations
test_scenarios = [
LLMNodeTestScenario(
description="No files",
user_query=fake_query,
user_files=[],
features=[],
vision_enabled=False,
vision_detail=None,
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(content=fake_query),
],
),
LLMNodeTestScenario(
description="User files",
user_query=fake_query,
user_files=[
File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text=fake_context,
role=PromptMessageRole.SYSTEM,
edition_type="basic",
),
LLMNodeChatModelMessage(
text="{#context#}",
role=PromptMessageRole.USER,
edition_type="basic",
),
LLMNodeChatModelMessage(
text=fake_assistant_prompt,
role=PromptMessageRole.ASSISTANT,
edition_type="basic",
),
],
expected_messages=[
SystemPromptMessage(content=fake_context),
UserPromptMessage(content=fake_context),
AssistantPromptMessage(content=fake_assistant_prompt),
]
+ mock_history[fake_window_size * -2 :]
+ [
UserPromptMessage(
content=[
TextPromptMessageContent(data=fake_query),
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
],
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File",
user_query=fake_query,
user_files=[],
vision_enabled=False,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=[
UserPromptMessage(
content=[
ImagePromptMessageContent(data=fake_remote_url, detail=fake_vision_detail),
]
),
]
+ mock_history[fake_window_size * -2 :]
+ [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File without vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.IMAGE,
filename="test1.jpg",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
)
},
),
LLMNodeTestScenario(
description="Prompt template with variable selector of File with video file and vision feature",
user_query=fake_query,
user_files=[],
vision_enabled=True,
vision_detail=fake_vision_detail,
features=[ModelFeature.VISION],
window_size=fake_window_size,
prompt_template=[
LLMNodeChatModelMessage(
text="{{#input.image#}}",
role=PromptMessageRole.USER,
edition_type="basic",
),
],
expected_messages=mock_history[fake_window_size * -2 :] + [UserPromptMessage(content=fake_query)],
file_variables={
"input.image": File(
tenant_id="test",
type=FileType.VIDEO,
filename="test1.mp4",
transfer_method=FileTransferMethod.REMOTE_URL,
remote_url=fake_remote_url,
extension="mp4",
)
},
),
]
for scenario in test_scenarios:
model_config.model_schema.features = scenario.features
for k, v in scenario.file_variables.items():
selector = k.split(".")
llm_node.graph_runtime_state.variable_pool.add(selector, v)
# Call the method under test
prompt_messages, _ = llm_node._fetch_prompt_messages(
user_query=scenario.user_query,
user_files=scenario.user_files,
context=fake_context,
memory=memory,
model_config=model_config,
prompt_template=scenario.prompt_template,
memory_config=memory_config,
vision_enabled=scenario.vision_enabled,
vision_detail=scenario.vision_detail,
variable_pool=llm_node.graph_runtime_state.variable_pool,
jinja2_variables=[],
)
# Verify the result
assert len(prompt_messages) == len(scenario.expected_messages), f"Scenario failed: {scenario.description}"
assert (
prompt_messages == scenario.expected_messages
), f"Message content mismatch in scenario: {scenario.description}"

View File

@ -0,0 +1,25 @@
from collections.abc import Mapping, Sequence
from pydantic import BaseModel, Field
from core.file import File
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelFeature
from core.workflow.nodes.llm.entities import LLMNodeChatModelMessage
class LLMNodeTestScenario(BaseModel):
"""Test scenario for LLM node testing."""
description: str = Field(..., description="Description of the test scenario")
user_query: str = Field(..., description="User query input")
user_files: Sequence[File] = Field(default_factory=list, description="List of user files")
vision_enabled: bool = Field(default=False, description="Whether vision is enabled")
vision_detail: str | None = Field(None, description="Vision detail level if vision is enabled")
features: Sequence[ModelFeature] = Field(default_factory=list, description="List of model features")
window_size: int = Field(..., description="Window size for memory")
prompt_template: Sequence[LLMNodeChatModelMessage] = Field(..., description="Template for prompt messages")
file_variables: Mapping[str, File | Sequence[File]] = Field(
default_factory=dict, description="List of file variables"
)
expected_messages: Sequence[PromptMessage] = Field(..., description="Expected messages after processing")

View File

@ -44,12 +44,6 @@ export const fileUpload: FileUpload = ({
}
export const getFileExtension = (fileName: string, fileMimetype: string, isRemote?: boolean) => {
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
if (fileName) {
const fileNamePair = fileName.split('.')
const fileNamePairLength = fileNamePair.length
@ -58,6 +52,12 @@ export const getFileExtension = (fileName: string, fileMimetype: string, isRemot
return fileNamePair[fileNamePairLength - 1]
}
if (fileMimetype)
return mime.getExtension(fileMimetype) || ''
if (isRemote)
return ''
return ''
}

View File

@ -144,6 +144,7 @@ const ConfigPromptItem: FC<Props> = ({
onEditionTypeChange={onEditionTypeChange}
varList={varList}
handleAddVariable={handleAddVariable}
isSupportFileVar
/>
)
}

View File

@ -67,6 +67,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
handleStop,
varInputs,
runResult,
filterJinjia2InputVar,
} = useConfig(id, data)
const model = inputs.model
@ -194,7 +195,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
list={inputs.prompt_config?.jinja2_variables || []}
onChange={handleVarListChange}
onVarNameChange={handleVarNameChange}
filterVar={filterVar}
filterVar={filterJinjia2InputVar}
/>
</Field>
)}
@ -233,6 +234,7 @@ const Panel: FC<NodePanelProps<LLMNodeType>> = ({
hasSetBlockStatus={hasSetBlockStatus}
nodesOutputVars={availableVars}
availableNodes={availableNodesWithParent}
isSupportFileVar
/>
{inputs.memory.query_prompt_template && !inputs.memory.query_prompt_template.includes('{{#sys.query#}}') && (

View File

@ -278,11 +278,15 @@ const useConfig = (id: string, payload: LLMNodeType) => {
}, [inputs, setInputs])
const filterInputVar = useCallback((varPayload: Var) => {
return [VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber, VarType.arrayFile].includes(varPayload.type)
}, [])
const filterJinjia2InputVar = useCallback((varPayload: Var) => {
return [VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber].includes(varPayload.type)
}, [])
const filterMemoryPromptVar = useCallback((varPayload: Var) => {
return [VarType.arrayObject, VarType.array, VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber].includes(varPayload.type)
return [VarType.arrayObject, VarType.array, VarType.number, VarType.string, VarType.secret, VarType.arrayString, VarType.arrayNumber, VarType.arrayFile].includes(varPayload.type)
}, [])
const {
@ -406,6 +410,7 @@ const useConfig = (id: string, payload: LLMNodeType) => {
handleRun,
handleStop,
runResult,
filterJinjia2InputVar,
}
}