import datetime import json import logging import re import threading import time import uuid from typing import Optional, List, cast from flask import current_app, Flask from flask_login import current_user from langchain.schema import Document from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter from sqlalchemy.orm.exc import ObjectDeletedError from core.data_loader.file_extractor import FileExtractor from core.data_loader.loader.notion import NotionLoader from core.docstore.dataset_docstore import DatesetDocumentStore from core.generator.llm_generator import LLMGenerator from core.index.index import IndexBuilder from core.model_providers.error import ProviderTokenNotInitError from core.model_providers.model_factory import ModelFactory from core.model_providers.models.entity.message import MessageType from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter from extensions.ext_database import db from extensions.ext_redis import redis_client from extensions.ext_storage import storage from libs import helper from models.dataset import Document as DatasetDocument from models.dataset import Dataset, DocumentSegment, DatasetProcessRule from models.model import UploadFile from models.source import DataSourceBinding class IndexingRunner: def __init__(self): self.storage = storage def run(self, dataset_documents: List[DatasetDocument]): """Run the indexing process.""" for dataset_document in dataset_documents: try: # get dataset dataset = Dataset.query.filter_by( id=dataset_document.dataset_id ).first() if not dataset: raise ValueError("no dataset found") # load file text_docs = self._load_data(dataset_document) # get the process rule processing_rule = db.session.query(DatasetProcessRule). \ filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \ first() # get splitter splitter = self._get_splitter(processing_rule) # split to documents documents = self._step_split( text_docs=text_docs, splitter=splitter, dataset=dataset, dataset_document=dataset_document, processing_rule=processing_rule ) self._build_index( dataset=dataset, dataset_document=dataset_document, documents=documents ) except DocumentIsPausedException: raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) except ProviderTokenNotInitError as e: dataset_document.indexing_status = 'error' dataset_document.error = str(e.description) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() except ObjectDeletedError: logging.warning('Document deleted, document id: {}'.format(dataset_document.id)) except Exception as e: logging.exception("consume document failed") dataset_document.indexing_status = 'error' dataset_document.error = str(e) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() def format_split_text(self, text): regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" matches = re.findall(regex, text, re.MULTILINE) result = [] for match in matches: q = match[0] a = match[1] if q and a: result.append({ "question": q, "answer": re.sub(r"\n\s*", "\n", a.strip()) }) return result def run_in_splitting_status(self, dataset_document: DatasetDocument): """Run the indexing process when the index_status is splitting.""" try: # get dataset dataset = Dataset.query.filter_by( id=dataset_document.dataset_id ).first() if not dataset: raise ValueError("no dataset found") # get exist document_segment list and delete document_segments = DocumentSegment.query.filter_by( dataset_id=dataset.id, document_id=dataset_document.id ).all() db.session.delete(document_segments) db.session.commit() # load file text_docs = self._load_data(dataset_document) # get the process rule processing_rule = db.session.query(DatasetProcessRule). \ filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \ first() # get splitter splitter = self._get_splitter(processing_rule) # split to documents documents = self._step_split( text_docs=text_docs, splitter=splitter, dataset=dataset, dataset_document=dataset_document, processing_rule=processing_rule ) # build index self._build_index( dataset=dataset, dataset_document=dataset_document, documents=documents ) except DocumentIsPausedException: raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) except ProviderTokenNotInitError as e: dataset_document.indexing_status = 'error' dataset_document.error = str(e.description) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() except Exception as e: logging.exception("consume document failed") dataset_document.indexing_status = 'error' dataset_document.error = str(e) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() def run_in_indexing_status(self, dataset_document: DatasetDocument): """Run the indexing process when the index_status is indexing.""" try: # get dataset dataset = Dataset.query.filter_by( id=dataset_document.dataset_id ).first() if not dataset: raise ValueError("no dataset found") # get exist document_segment list and delete document_segments = DocumentSegment.query.filter_by( dataset_id=dataset.id, document_id=dataset_document.id ).all() documents = [] if document_segments: for document_segment in document_segments: # transform segment to node if document_segment.status != "completed": document = Document( page_content=document_segment.content, metadata={ "doc_id": document_segment.index_node_id, "doc_hash": document_segment.index_node_hash, "document_id": document_segment.document_id, "dataset_id": document_segment.dataset_id, } ) documents.append(document) # build index self._build_index( dataset=dataset, dataset_document=dataset_document, documents=documents ) except DocumentIsPausedException: raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) except ProviderTokenNotInitError as e: dataset_document.indexing_status = 'error' dataset_document.error = str(e.description) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() except Exception as e: logging.exception("consume document failed") dataset_document.indexing_status = 'error' dataset_document.error = str(e) dataset_document.stopped_at = datetime.datetime.utcnow() db.session.commit() def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict, doc_form: str = None, doc_language: str = 'English', dataset_id: str = None, indexing_technique: str = 'economy') -> dict: """ Estimate the indexing for the document. """ embedding_model = None if dataset_id: dataset = Dataset.query.filter_by( id=dataset_id ).first() if not dataset: raise ValueError('Dataset not found.') if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality': embedding_model = ModelFactory.get_embedding_model( tenant_id=dataset.tenant_id, model_provider_name=dataset.embedding_model_provider, model_name=dataset.embedding_model ) else: if indexing_technique == 'high_quality': embedding_model = ModelFactory.get_embedding_model( tenant_id=tenant_id ) tokens = 0 preview_texts = [] total_segments = 0 for file_detail in file_details: # load data from file text_docs = FileExtractor.load(file_detail) processing_rule = DatasetProcessRule( mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"]) ) # get splitter splitter = self._get_splitter(processing_rule) # split to documents documents = self._split_to_documents_for_estimate( text_docs=text_docs, splitter=splitter, processing_rule=processing_rule ) total_segments += len(documents) for document in documents: if len(preview_texts) < 5: preview_texts.append(document.page_content) if indexing_technique == 'high_quality' or embedding_model: tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content)) if doc_form and doc_form == 'qa_model': text_generation_model = ModelFactory.get_text_generation_model( tenant_id=tenant_id ) if len(preview_texts) > 0: # qa model document response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language) document_qa_list = self.format_split_text(response) return { "total_segments": total_segments * 20, "tokens": total_segments * 2000, "total_price": '{:f}'.format( text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)), "currency": embedding_model.get_currency(), "qa_preview": document_qa_list, "preview": preview_texts } return { "total_segments": total_segments, "tokens": tokens, "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0, "currency": embedding_model.get_currency() if embedding_model else 'USD', "preview": preview_texts } def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict, doc_form: str = None, doc_language: str = 'English', dataset_id: str = None, indexing_technique: str = 'economy') -> dict: """ Estimate the indexing for the document. """ embedding_model = None if dataset_id: dataset = Dataset.query.filter_by( id=dataset_id ).first() if not dataset: raise ValueError('Dataset not found.') if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality': embedding_model = ModelFactory.get_embedding_model( tenant_id=dataset.tenant_id, model_provider_name=dataset.embedding_model_provider, model_name=dataset.embedding_model ) else: if indexing_technique == 'high_quality': embedding_model = ModelFactory.get_embedding_model( tenant_id=tenant_id ) # load data from notion tokens = 0 preview_texts = [] total_segments = 0 for notion_info in notion_info_list: workspace_id = notion_info['workspace_id'] data_source_binding = DataSourceBinding.query.filter( db.and_( DataSourceBinding.tenant_id == current_user.current_tenant_id, DataSourceBinding.provider == 'notion', DataSourceBinding.disabled == False, DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"' ) ).first() if not data_source_binding: raise ValueError('Data source binding not found.') for page in notion_info['pages']: loader = NotionLoader( notion_access_token=data_source_binding.access_token, notion_workspace_id=workspace_id, notion_obj_id=page['page_id'], notion_page_type=page['type'] ) documents = loader.load() processing_rule = DatasetProcessRule( mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"]) ) # get splitter splitter = self._get_splitter(processing_rule) # split to documents documents = self._split_to_documents_for_estimate( text_docs=documents, splitter=splitter, processing_rule=processing_rule ) total_segments += len(documents) for document in documents: if len(preview_texts) < 5: preview_texts.append(document.page_content) if indexing_technique == 'high_quality' or embedding_model: tokens += embedding_model.get_num_tokens(document.page_content) if doc_form and doc_form == 'qa_model': text_generation_model = ModelFactory.get_text_generation_model( tenant_id=tenant_id ) if len(preview_texts) > 0: # qa model document response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language) document_qa_list = self.format_split_text(response) return { "total_segments": total_segments * 20, "tokens": total_segments * 2000, "total_price": '{:f}'.format( text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)), "currency": embedding_model.get_currency(), "qa_preview": document_qa_list, "preview": preview_texts } return { "total_segments": total_segments, "tokens": tokens, "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0, "currency": embedding_model.get_currency() if embedding_model else 'USD', "preview": preview_texts } def _load_data(self, dataset_document: DatasetDocument) -> List[Document]: # load file if dataset_document.data_source_type not in ["upload_file", "notion_import"]: return [] data_source_info = dataset_document.data_source_info_dict text_docs = [] if dataset_document.data_source_type == 'upload_file': if not data_source_info or 'upload_file_id' not in data_source_info: raise ValueError("no upload file found") file_detail = db.session.query(UploadFile). \ filter(UploadFile.id == data_source_info['upload_file_id']). \ one_or_none() if file_detail: text_docs = FileExtractor.load(file_detail) elif dataset_document.data_source_type == 'notion_import': loader = NotionLoader.from_document(dataset_document) text_docs = loader.load() # update document status to splitting self._update_document_index_status( document_id=dataset_document.id, after_indexing_status="splitting", extra_update_params={ DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]), DatasetDocument.parsing_completed_at: datetime.datetime.utcnow() } ) # replace doc id to document model id text_docs = cast(List[Document], text_docs) for text_doc in text_docs: # remove invalid symbol text_doc.page_content = self.filter_string(text_doc.page_content) text_doc.metadata['document_id'] = dataset_document.id text_doc.metadata['dataset_id'] = dataset_document.dataset_id return text_docs def filter_string(self, text): text = re.sub(r'<\|', '<', text) text = re.sub(r'\|>', '>', text) text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text) return text def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter: """ Get the NodeParser object according to the processing rule. """ if processing_rule.mode == "custom": # The user-defined segmentation rule rules = json.loads(processing_rule.rules) segmentation = rules["segmentation"] if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000: raise ValueError("Custom segment length should be between 50 and 1000.") separator = segmentation["separator"] if separator: separator = separator.replace('\\n', '\n') character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=segmentation["max_tokens"], chunk_overlap=0, fixed_separator=separator, separators=["\n\n", "。", ".", " ", ""] ) else: # Automatic segmentation character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'], chunk_overlap=0, separators=["\n\n", "。", ".", " ", ""] ) return character_splitter def _step_split(self, text_docs: List[Document], splitter: TextSplitter, dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \ -> List[Document]: """ Split the text documents into documents and save them to the document segment. """ documents = self._split_to_documents( text_docs=text_docs, splitter=splitter, processing_rule=processing_rule, tenant_id=dataset.tenant_id, document_form=dataset_document.doc_form, document_language=dataset_document.doc_language ) # save node to document segment doc_store = DatesetDocumentStore( dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id ) # add document segments doc_store.add_documents(documents) # update document status to indexing cur_time = datetime.datetime.utcnow() self._update_document_index_status( document_id=dataset_document.id, after_indexing_status="indexing", extra_update_params={ DatasetDocument.cleaning_completed_at: cur_time, DatasetDocument.splitting_completed_at: cur_time, } ) # update segment status to indexing self._update_segments_by_document( dataset_document_id=dataset_document.id, update_params={ DocumentSegment.status: "indexing", DocumentSegment.indexing_at: datetime.datetime.utcnow() } ) return documents def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule, tenant_id: str, document_form: str, document_language: str) -> List[Document]: """ Split the text documents into nodes. """ all_documents = [] all_qa_documents = [] for text_doc in text_docs: # document clean document_text = self._document_clean(text_doc.page_content, processing_rule) text_doc.page_content = document_text # parse document to nodes documents = splitter.split_documents([text_doc]) split_documents = [] for document_node in documents: if document_node.page_content.strip(): doc_id = str(uuid.uuid4()) hash = helper.generate_text_hash(document_node.page_content) document_node.metadata['doc_id'] = doc_id document_node.metadata['doc_hash'] = hash split_documents.append(document_node) all_documents.extend(split_documents) # processing qa document if document_form == 'qa_model': for i in range(0, len(all_documents), 10): threads = [] sub_documents = all_documents[i:i + 10] for doc in sub_documents: document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={ 'flask_app': current_app._get_current_object(), 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents, 'document_language': document_language}) threads.append(document_format_thread) document_format_thread.start() for thread in threads: thread.join() return all_qa_documents return all_documents def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language): format_documents = [] if document_node.page_content is None or not document_node.page_content.strip(): return with flask_app.app_context(): try: # qa model document response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language) document_qa_list = self.format_split_text(response) qa_documents = [] for result in document_qa_list: qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy()) doc_id = str(uuid.uuid4()) hash = helper.generate_text_hash(result['question']) qa_document.metadata['answer'] = result['answer'] qa_document.metadata['doc_id'] = doc_id qa_document.metadata['doc_hash'] = hash qa_documents.append(qa_document) format_documents.extend(qa_documents) except Exception as e: logging.exception(e) all_qa_documents.extend(format_documents) def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule) -> List[Document]: """ Split the text documents into nodes. """ all_documents = [] for text_doc in text_docs: # document clean document_text = self._document_clean(text_doc.page_content, processing_rule) text_doc.page_content = document_text # parse document to nodes documents = splitter.split_documents([text_doc]) split_documents = [] for document in documents: if document.page_content is None or not document.page_content.strip(): continue doc_id = str(uuid.uuid4()) hash = helper.generate_text_hash(document.page_content) document.metadata['doc_id'] = doc_id document.metadata['doc_hash'] = hash split_documents.append(document) all_documents.extend(split_documents) return all_documents def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str: """ Clean the document text according to the processing rules. """ if processing_rule.mode == "automatic": rules = DatasetProcessRule.AUTOMATIC_RULES else: rules = json.loads(processing_rule.rules) if processing_rule.rules else {} if 'pre_processing_rules' in rules: pre_processing_rules = rules["pre_processing_rules"] for pre_processing_rule in pre_processing_rules: if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True: # Remove extra spaces pattern = r'\n{3,}' text = re.sub(pattern, '\n\n', text) pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}' text = re.sub(pattern, ' ', text) elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True: # Remove email pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)' text = re.sub(pattern, '', text) # Remove URL pattern = r'https?://[^\s]+' text = re.sub(pattern, '', text) return text def format_split_text(self, text): regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式 matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果 result = [] # 存储最终的结果 for match in matches: q = match[0] a = match[1] if q and a: # 如果Q和A都存在,就将其添加到结果中 result.append({ "question": q, "answer": re.sub(r"\n\s*", "\n", a.strip()) }) return result def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None: """ Build the index for the document. """ vector_index = IndexBuilder.get_index(dataset, 'high_quality') keyword_table_index = IndexBuilder.get_index(dataset, 'economy') embedding_model = None if dataset.indexing_technique == 'high_quality': embedding_model = ModelFactory.get_embedding_model( tenant_id=dataset.tenant_id, model_provider_name=dataset.embedding_model_provider, model_name=dataset.embedding_model ) # chunk nodes by chunk size indexing_start_at = time.perf_counter() tokens = 0 chunk_size = 100 for i in range(0, len(documents), chunk_size): # check document is paused self._check_document_paused_status(dataset_document.id) chunk_documents = documents[i:i + chunk_size] if dataset.indexing_technique == 'high_quality' or embedding_model: tokens += sum( embedding_model.get_num_tokens(document.page_content) for document in chunk_documents ) # save vector index if vector_index: vector_index.add_texts(chunk_documents) # save keyword index keyword_table_index.add_texts(chunk_documents) document_ids = [document.metadata['doc_id'] for document in chunk_documents] db.session.query(DocumentSegment).filter( DocumentSegment.document_id == dataset_document.id, DocumentSegment.index_node_id.in_(document_ids), DocumentSegment.status == "indexing" ).update({ DocumentSegment.status: "completed", DocumentSegment.enabled: True, DocumentSegment.completed_at: datetime.datetime.utcnow() }) db.session.commit() indexing_end_at = time.perf_counter() # update document status to completed self._update_document_index_status( document_id=dataset_document.id, after_indexing_status="completed", extra_update_params={ DatasetDocument.tokens: tokens, DatasetDocument.completed_at: datetime.datetime.utcnow(), DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at, } ) def _check_document_paused_status(self, document_id: str): indexing_cache_key = 'document_{}_is_paused'.format(document_id) result = redis_client.get(indexing_cache_key) if result: raise DocumentIsPausedException() def _update_document_index_status(self, document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None) -> None: """ Update the document indexing status. """ count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count() if count > 0: raise DocumentIsPausedException() document = DatasetDocument.query.filter_by(id=document_id).first() if not document: raise DocumentIsDeletedPausedException() update_params = { DatasetDocument.indexing_status: after_indexing_status } if extra_update_params: update_params.update(extra_update_params) DatasetDocument.query.filter_by(id=document_id).update(update_params) db.session.commit() def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None: """ Update the document segment by document id. """ DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params) db.session.commit() def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset): """ Batch add segments index processing """ documents = [] for segment in segments: document = Document( page_content=segment.content, metadata={ "doc_id": segment.index_node_id, "doc_hash": segment.index_node_hash, "document_id": segment.document_id, "dataset_id": segment.dataset_id, } ) documents.append(document) # save vector index index = IndexBuilder.get_index(dataset, 'high_quality') if index: index.add_texts(documents, duplicate_check=True) # save keyword index index = IndexBuilder.get_index(dataset, 'economy') if index: index.add_texts(documents) class DocumentIsPausedException(Exception): pass class DocumentIsDeletedPausedException(Exception): pass