import datetime import logging import time import click from celery import shared_task from core.indexing_runner import IndexingRunner from core.rag.index_processor.index_processor_factory import IndexProcessorFactory from extensions.ext_database import db from extensions.ext_redis import redis_client from models.dataset import Dataset, Document, DocumentSegment from services.feature_service import FeatureService @shared_task(queue="dataset") def sync_website_document_indexing_task(dataset_id: str, document_id: str): """ Async process document :param dataset_id: :param document_id: Usage: sunc_website_document_indexing_task.delay(dataset_id, document_id) """ start_at = time.perf_counter() dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first() sync_indexing_cache_key = "document_{}_is_sync".format(document_id) # check document limit features = FeatureService.get_features(dataset.tenant_id) try: if features.billing.enabled: vector_space = features.vector_space if 0 < vector_space.limit <= vector_space.size: raise ValueError( "Your total number of documents plus the number of uploads have over the limit of " "your subscription." ) except Exception as e: document = ( db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() ) if document: document.indexing_status = "error" document.error = str(e) document.stopped_at = datetime.datetime.utcnow() db.session.add(document) db.session.commit() redis_client.delete(sync_indexing_cache_key) return logging.info(click.style("Start sync website document: {}".format(document_id), fg="green")) document = db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first() try: if document: # clean old data index_processor = IndexProcessorFactory(document.doc_form).init_index_processor() segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all() if segments: index_node_ids = [segment.index_node_id for segment in segments] # delete from vector index index_processor.clean(dataset, index_node_ids) for segment in segments: db.session.delete(segment) db.session.commit() document.indexing_status = "parsing" document.processing_started_at = datetime.datetime.utcnow() db.session.add(document) db.session.commit() indexing_runner = IndexingRunner() indexing_runner.run([document]) redis_client.delete(sync_indexing_cache_key) except Exception as ex: document.indexing_status = "error" document.error = str(ex) document.stopped_at = datetime.datetime.utcnow() db.session.add(document) db.session.commit() logging.info(click.style(str(ex), fg="yellow")) redis_client.delete(sync_indexing_cache_key) pass end_at = time.perf_counter() logging.info(click.style("Sync document: {} latency: {}".format(document_id, end_at - start_at), fg="green"))