# Dify Backend API ## Usage > [!IMPORTANT] > In the v0.6.12 release, we deprecated `pip` as the package management tool for Dify API Backend service and replaced it with `poetry`. 1. Start the docker-compose stack The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using `docker-compose`. ```bash cd ../docker cp middleware.env.example middleware.env # change the profile to other vector database if you are not using weaviate docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d cd ../api ``` 2. Copy `.env.example` to `.env` 3. Generate a `SECRET_KEY` in the `.env` file. ```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env ``` ```bash for Mac secret_key=$(openssl rand -base64 42) sed -i '' "/^SECRET_KEY=/c\\ SECRET_KEY=${secret_key}" .env ``` 4. Create environment. Dify API service uses [Poetry](https://python-poetry.org/docs/) to manage dependencies. You can execute `poetry shell` to activate the environment. 5. Install dependencies ```bash poetry env use 3.10 poetry install ``` In case of contributors missing to update dependencies for `pyproject.toml`, you can perform the following shell instead. ```bash poetry shell # activate current environment poetry add $(cat requirements.txt) # install dependencies of production and update pyproject.toml poetry add $(cat requirements-dev.txt) --group dev # install dependencies of development and update pyproject.toml ``` 6. Run migrate Before the first launch, migrate the database to the latest version. ```bash poetry run python -m flask db upgrade ``` 7. Start backend ```bash poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug ``` 8. Start Dify [web](../web) service. 9. Setup your application by visiting `http://localhost:3000`... 10. If you need to debug local async processing, please start the worker service. ```bash poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion ``` The started celery app handles the async tasks, e.g. dataset importing and documents indexing. ## Testing 1. Install dependencies for both the backend and the test environment ```bash poetry install --with dev ``` 2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml` ```bash cd ../ poetry run -C api bash dev/pytest/pytest_all_tests.sh ```