mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
c69f5b07ba
Co-authored-by: -LAN- <laipz8200@outlook.com>
131 lines
4.5 KiB
Python
131 lines
4.5 KiB
Python
from core.model_runtime.entities.model_entities import DefaultParameterName
|
||
|
||
PARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {
|
||
DefaultParameterName.TEMPERATURE: {
|
||
"label": {
|
||
"en_US": "Temperature",
|
||
"zh_Hans": "温度",
|
||
},
|
||
"type": "float",
|
||
"help": {
|
||
"en_US": "Controls randomness. Lower temperature results in less random completions."
|
||
" As the temperature approaches zero, the model will become deterministic and repetitive."
|
||
" Higher temperature results in more random completions.",
|
||
"zh_Hans": "温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。"
|
||
"较高的温度会导致更多的随机完成。",
|
||
},
|
||
"required": False,
|
||
"default": 0.0,
|
||
"min": 0.0,
|
||
"max": 1.0,
|
||
"precision": 2,
|
||
},
|
||
DefaultParameterName.TOP_P: {
|
||
"label": {
|
||
"en_US": "Top P",
|
||
"zh_Hans": "Top P",
|
||
},
|
||
"type": "float",
|
||
"help": {
|
||
"en_US": "Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options"
|
||
" are considered.",
|
||
"zh_Hans": "通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。",
|
||
},
|
||
"required": False,
|
||
"default": 1.0,
|
||
"min": 0.0,
|
||
"max": 1.0,
|
||
"precision": 2,
|
||
},
|
||
DefaultParameterName.TOP_K: {
|
||
"label": {
|
||
"en_US": "Top K",
|
||
"zh_Hans": "Top K",
|
||
},
|
||
"type": "int",
|
||
"help": {
|
||
"en_US": "Limits the number of tokens to consider for each step by keeping only the k most likely tokens.",
|
||
"zh_Hans": "通过只保留每一步中最可能的 k 个标记来限制要考虑的标记数量。",
|
||
},
|
||
"required": False,
|
||
"default": 50,
|
||
"min": 1,
|
||
"max": 100,
|
||
"precision": 0,
|
||
},
|
||
DefaultParameterName.PRESENCE_PENALTY: {
|
||
"label": {
|
||
"en_US": "Presence Penalty",
|
||
"zh_Hans": "存在惩罚",
|
||
},
|
||
"type": "float",
|
||
"help": {
|
||
"en_US": "Applies a penalty to the log-probability of tokens already in the text.",
|
||
"zh_Hans": "对文本中已有的标记的对数概率施加惩罚。",
|
||
},
|
||
"required": False,
|
||
"default": 0.0,
|
||
"min": 0.0,
|
||
"max": 1.0,
|
||
"precision": 2,
|
||
},
|
||
DefaultParameterName.FREQUENCY_PENALTY: {
|
||
"label": {
|
||
"en_US": "Frequency Penalty",
|
||
"zh_Hans": "频率惩罚",
|
||
},
|
||
"type": "float",
|
||
"help": {
|
||
"en_US": "Applies a penalty to the log-probability of tokens that appear in the text.",
|
||
"zh_Hans": "对文本中出现的标记的对数概率施加惩罚。",
|
||
},
|
||
"required": False,
|
||
"default": 0.0,
|
||
"min": 0.0,
|
||
"max": 1.0,
|
||
"precision": 2,
|
||
},
|
||
DefaultParameterName.MAX_TOKENS: {
|
||
"label": {
|
||
"en_US": "Max Tokens",
|
||
"zh_Hans": "最大标记",
|
||
},
|
||
"type": "int",
|
||
"help": {
|
||
"en_US": "Specifies the upper limit on the length of generated results."
|
||
" If the generated results are truncated, you can increase this parameter.",
|
||
"zh_Hans": "指定生成结果长度的上限。如果生成结果截断,可以调大该参数。",
|
||
},
|
||
"required": False,
|
||
"default": 64,
|
||
"min": 1,
|
||
"max": 2048,
|
||
"precision": 0,
|
||
},
|
||
DefaultParameterName.RESPONSE_FORMAT: {
|
||
"label": {
|
||
"en_US": "Response Format",
|
||
"zh_Hans": "回复格式",
|
||
},
|
||
"type": "string",
|
||
"help": {
|
||
"en_US": "Set a response format, ensure the output from llm is a valid code block as possible,"
|
||
" such as JSON, XML, etc.",
|
||
"zh_Hans": "设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等",
|
||
},
|
||
"required": False,
|
||
"options": ["JSON", "XML"],
|
||
},
|
||
DefaultParameterName.JSON_SCHEMA: {
|
||
"label": {
|
||
"en_US": "JSON Schema",
|
||
},
|
||
"type": "text",
|
||
"help": {
|
||
"en_US": "Set a response json schema will ensure LLM to adhere it.",
|
||
"zh_Hans": "设置返回的json schema,llm将按照它返回",
|
||
},
|
||
"required": False,
|
||
},
|
||
}
|