dify/api/tests/integration_tests/model_runtime/chatglm/test_llm.py

286 lines
9.1 KiB
Python

import os
from typing import Generator
import pytest
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
from core.model_runtime.entities.message_entities import (AssistantPromptMessage, PromptMessageTool,
SystemPromptMessage, TextPromptMessageContent,
UserPromptMessage)
from core.model_runtime.entities.model_entities import AIModelEntity
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
def test_predefined_models():
model = ChatGLMLargeLanguageModel()
model_schemas = model.predefined_models()
assert len(model_schemas) >= 1
assert isinstance(model_schemas[0], AIModelEntity)
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_validate_credentials_for_chat_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='chatglm2-6b',
credentials={
'api_base': 'invalid_key'
}
)
model.validate_credentials(
model='chatglm2-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
}
)
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_invoke_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model='chatglm2-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.7,
'top_p': 1.0,
},
stop=['you'],
user="abc-123",
stream=False
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_invoke_stream_model(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model='chatglm2-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
model_parameters={
'temperature': 0.7,
'top_p': 1.0,
},
stop=['you'],
stream=True,
user="abc-123"
)
assert isinstance(response, Generator)
for chunk in response:
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_invoke_stream_model_with_functions(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model='chatglm3-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
SystemPromptMessage(
content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'
),
UserPromptMessage(
content='波士顿天气如何?'
)
],
model_parameters={
'temperature': 0,
'top_p': 1.0,
},
stop=['you'],
user='abc-123',
stream=True,
tools=[
PromptMessageTool(
name='get_current_weather',
description='Get the current weather in a given location',
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": [
"location"
]
}
)
]
)
assert isinstance(response, Generator)
call: LLMResultChunk = None
chunks = []
for chunk in response:
chunks.append(chunk)
assert isinstance(chunk, LLMResultChunk)
assert isinstance(chunk.delta, LLMResultChunkDelta)
assert isinstance(chunk.delta.message, AssistantPromptMessage)
assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
call = chunk
break
assert call is not None
assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
def test_invoke_model_with_functions(setup_openai_mock):
model = ChatGLMLargeLanguageModel()
response = model.invoke(
model='chatglm3-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
UserPromptMessage(
content='What is the weather like in San Francisco?'
)
],
model_parameters={
'temperature': 0.7,
'top_p': 1.0,
},
stop=['you'],
user='abc-123',
stream=False,
tools=[
PromptMessageTool(
name='get_current_weather',
description='Get the current weather in a given location',
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"c",
"f"
]
}
},
"required": [
"location"
]
}
)
]
)
assert isinstance(response, LLMResult)
assert len(response.message.content) > 0
assert response.usage.total_tokens > 0
assert response.message.tool_calls[0].function.name == 'get_current_weather'
def test_get_num_tokens():
model = ChatGLMLargeLanguageModel()
num_tokens = model.get_num_tokens(
model='chatglm2-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
tools=[
PromptMessageTool(
name='get_current_weather',
description='Get the current weather in a given location',
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"c",
"f"
]
}
},
"required": [
"location"
]
}
)
]
)
assert isinstance(num_tokens, int)
assert num_tokens == 77
num_tokens = model.get_num_tokens(
model='chatglm2-6b',
credentials={
'api_base': os.environ.get('CHATGLM_API_BASE')
},
prompt_messages=[
SystemPromptMessage(
content='You are a helpful AI assistant.',
),
UserPromptMessage(
content='Hello World!'
)
],
)
assert isinstance(num_tokens, int)
assert num_tokens == 21