mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
75 lines
2.9 KiB
Python
75 lines
2.9 KiB
Python
import logging
|
|
import time
|
|
|
|
import click
|
|
from celery import shared_task
|
|
from core.index.index import IndexBuilder
|
|
from extensions.ext_database import db
|
|
from langchain.schema import Document
|
|
from models.dataset import Dataset
|
|
from models.dataset import Document as DatasetDocument
|
|
from models.dataset import DocumentSegment
|
|
|
|
|
|
@shared_task(queue='dataset')
|
|
def deal_dataset_vector_index_task(dataset_id: str, action: str):
|
|
"""
|
|
Async deal dataset from index
|
|
:param dataset_id: dataset_id
|
|
:param action: action
|
|
Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
|
|
"""
|
|
logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
|
|
start_at = time.perf_counter()
|
|
|
|
try:
|
|
dataset = Dataset.query.filter_by(
|
|
id=dataset_id
|
|
).first()
|
|
|
|
if not dataset:
|
|
raise Exception('Dataset not found')
|
|
|
|
if action == "remove":
|
|
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
|
|
index.delete_by_group_id(dataset.id)
|
|
elif action == "add":
|
|
dataset_documents = db.session.query(DatasetDocument).filter(
|
|
DatasetDocument.dataset_id == dataset_id,
|
|
DatasetDocument.indexing_status == 'completed',
|
|
DatasetDocument.enabled == True,
|
|
DatasetDocument.archived == False,
|
|
).all()
|
|
|
|
if dataset_documents:
|
|
# save vector index
|
|
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=False)
|
|
documents = []
|
|
for dataset_document in dataset_documents:
|
|
# delete from vector index
|
|
segments = db.session.query(DocumentSegment).filter(
|
|
DocumentSegment.document_id == dataset_document.id,
|
|
DocumentSegment.enabled == True
|
|
) .order_by(DocumentSegment.position.asc()).all()
|
|
for segment in segments:
|
|
document = Document(
|
|
page_content=segment.content,
|
|
metadata={
|
|
"doc_id": segment.index_node_id,
|
|
"doc_hash": segment.index_node_hash,
|
|
"document_id": segment.document_id,
|
|
"dataset_id": segment.dataset_id,
|
|
}
|
|
)
|
|
|
|
documents.append(document)
|
|
|
|
# save vector index
|
|
index.create(documents)
|
|
|
|
end_at = time.perf_counter()
|
|
logging.info(
|
|
click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
|
|
except Exception:
|
|
logging.exception("Deal dataset vector index failed")
|