dify/api/services/dataset_service.py
Jyong a71f2863ac
Annotation management (#1767)
Co-authored-by: jyong <jyong@dify.ai>
2023-12-18 13:10:05 +08:00

1205 lines
53 KiB
Python

import json
import logging
import datetime
import time
import random
import uuid
from typing import Optional, List
from flask import current_app
from sqlalchemy import func
from core.index.index import IndexBuilder
from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_providers.model_factory import ModelFactory
from extensions.ext_redis import redis_client
from flask_login import current_user
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from libs import helper
from models.account import Account
from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment, \
DatasetCollectionBinding
from models.model import UploadFile
from models.source import DataSourceBinding
from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.vector_service import VectorService
from tasks.clean_notion_document_task import clean_notion_document_task
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
if user:
permission_filter = db.or_(Dataset.created_by == user.id,
Dataset.permission == 'all_team_members')
else:
permission_filter = Dataset.permission == 'all_team_members'
datasets = Dataset.query.filter(
db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
.order_by(Dataset.created_at.desc()) \
.paginate(
page=page,
per_page=per_page,
max_per_page=100,
error_out=False
)
return datasets.items, datasets.total
@staticmethod
def get_process_rules(dataset_id):
# get the latest process rule
dataset_process_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.dataset_id == dataset_id). \
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
return {
'mode': mode,
'rules': rules
}
@staticmethod
def get_datasets_by_ids(ids, tenant_id):
datasets = Dataset.query.filter(Dataset.id.in_(ids),
Dataset.tenant_id == tenant_id).paginate(
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
return datasets.items, datasets.total
@staticmethod
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(
f'Dataset with name {name} already exists.')
embedding_model = None
if indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
dataset = Dataset(name=name, indexing_technique=indexing_technique)
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.model_provider.provider_name if embedding_model else None
dataset.embedding_model = embedding_model.name if embedding_model else None
db.session.add(dataset)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if dataset is None:
return None
else:
return dataset
@staticmethod
def check_dataset_model_setting(dataset):
if dataset.indexing_technique == 'high_quality':
try:
ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
except LLMBadRequestError:
raise ValueError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: "
f"{ex.description}")
@staticmethod
def update_dataset(dataset_id, data, user):
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
if dataset.indexing_technique != data['indexing_technique']:
# if update indexing_technique
if data['indexing_technique'] == 'economy':
action = 'remove'
filtered_data['embedding_model'] = None
filtered_data['embedding_model_provider'] = None
filtered_data['collection_binding_id'] = None
elif data['indexing_technique'] == 'high_quality':
action = 'add'
# get embedding model setting
try:
embedding_model = ModelFactory.get_embedding_model(
tenant_id=current_user.current_tenant_id
)
filtered_data['embedding_model'] = embedding_model.name
filtered_data['embedding_model_provider'] = embedding_model.model_provider.provider_name
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.model_provider.provider_name,
embedding_model.name
)
filtered_data['collection_binding_id'] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
f"No Embedding Model available. Please configure a valid provider "
f"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data['updated_by'] = user.id
filtered_data['updated_at'] = datetime.datetime.now()
# update Retrieval model
filtered_data['retrieval_model'] = data['retrieval_model']
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod
def delete_dataset(dataset_id, user):
# todo: cannot delete dataset if it is being processed
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
return False
DatasetService.check_dataset_permission(dataset, user)
dataset_was_deleted.send(dataset)
db.session.delete(dataset)
db.session.commit()
return True
@staticmethod
def check_dataset_permission(dataset, user):
if dataset.tenant_id != user.current_tenant_id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
if dataset.permission == 'only_me' and dataset.created_by != user.id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
@staticmethod
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
.order_by(db.desc(DatasetQuery.created_at)) \
.paginate(
page=page, per_page=per_page, max_per_page=100, error_out=False
)
return dataset_queries.items, dataset_queries.total
@staticmethod
def get_related_apps(dataset_id: str):
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
.order_by(db.desc(AppDatasetJoin.created_at)).all()
class DocumentService:
DEFAULT_RULES = {
'mode': 'custom',
'rules': {
'pre_processing_rules': [
{'id': 'remove_extra_spaces', 'enabled': True},
{'id': 'remove_urls_emails', 'enabled': False}
],
'segmentation': {
'delimiter': '\n',
'max_tokens': 500
}
}
}
DOCUMENT_METADATA_SCHEMA = {
"book": {
"title": str,
"language": str,
"author": str,
"publisher": str,
"publication_date": str,
"isbn": str,
"category": str,
},
"web_page": {
"title": str,
"url": str,
"language": str,
"publish_date": str,
"author/publisher": str,
"topic/keywords": str,
"description": str,
},
"paper": {
"title": str,
"language": str,
"author": str,
"publish_date": str,
"journal/conference_name": str,
"volume/issue/page_numbers": str,
"doi": str,
"topic/keywords": str,
"abstract": str,
},
"social_media_post": {
"platform": str,
"author/username": str,
"publish_date": str,
"post_url": str,
"topic/tags": str,
},
"wikipedia_entry": {
"title": str,
"language": str,
"web_page_url": str,
"last_edit_date": str,
"editor/contributor": str,
"summary/introduction": str,
},
"personal_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"tags/category": str,
},
"business_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"department/team": str,
},
"im_chat_log": {
"chat_platform": str,
"chat_participants/group_name": str,
"start_date": str,
"end_date": str,
"summary": str,
},
"synced_from_notion": {
"title": str,
"language": str,
"author/creator": str,
"creation_date": str,
"last_modified_date": str,
"notion_page_link": str,
"category/tags": str,
"description": str,
},
"synced_from_github": {
"repository_name": str,
"repository_description": str,
"repository_owner/organization": str,
"code_filename": str,
"code_file_path": str,
"programming_language": str,
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str,
},
"others": dict
}
@staticmethod
def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
return document
@staticmethod
def get_document_by_id(document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
return document
@staticmethod
def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.enabled == True
).all()
return documents
@staticmethod
def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
documents = db.session.query(Document).filter(
Document.batch == batch,
Document.dataset_id == dataset_id,
Document.tenant_id == current_user.current_tenant_id
).all()
return documents
@staticmethod
def get_document_file_detail(file_id: str):
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == file_id). \
one_or_none()
return file_detail
@staticmethod
def check_archived(document):
if document.archived:
return True
else:
return False
@staticmethod
def delete_document(document):
# trigger document_was_deleted signal
document_was_deleted.send(document.id, dataset_id=document.dataset_id)
db.session.delete(document)
db.session.commit()
@staticmethod
def pause_document(document):
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
raise DocumentIndexingError()
# update document to be paused
document.is_paused = True
document.paused_by = current_user.id
document.paused_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
# set document paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.setnx(indexing_cache_key, "True")
@staticmethod
def recover_document(document):
if not document.is_paused:
raise DocumentIndexingError()
# update document to be recover
document.is_paused = False
document.paused_by = None
document.paused_at = None
db.session.add(document)
db.session.commit()
# delete paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.delete(indexing_cache_key)
# trigger async task
recover_document_indexing_task.delay(document.dataset_id, document.id)
@staticmethod
def get_documents_position(dataset_id):
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
if document:
return document.position + 1
else:
return 1
@staticmethod
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
if 'original_document_id' not in document_data or not document_data['original_document_id']:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
if not dataset.indexing_technique:
if 'indexing_technique' not in document_data \
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is required")
dataset.indexing_technique = document_data["indexing_technique"]
if document_data["indexing_technique"] == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id
)
dataset.embedding_model = embedding_model.name
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.model_provider.provider_name,
embedding_model.name
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
'retrieval_model') else default_retrieval_model
documents = []
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
if 'original_document_id' in document_data and document_data["original_document_id"]:
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
documents.append(document)
else:
# save process rule
if not dataset_process_rule:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, file_name, batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
exist_page_ids = []
exist_document = dict()
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='notion_import',
enabled=True
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info['notion_page_id'])
exist_document[data_source_info['notion_page_id']] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
if page['page_id'] not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, page['page_name'], batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page['page_id'])
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
db.session.commit()
# trigger async task
document_indexing_task.delay(dataset.id, document_ids)
return documents, batch
@staticmethod
def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
document_language: str, data_source_info: dict, created_from: str, position: int,
account: Account,
name: str, batch: str):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
position=position,
data_source_type=data_source_type,
data_source_info=json.dumps(data_source_info),
dataset_process_rule_id=process_rule_id,
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
doc_language=document_language
)
return document
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id).count()
return documents_count
@staticmethod
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
DatasetService.check_dataset_model_setting(dataset)
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
if document.display_status != 'available':
raise ValueError("Document is not available")
# update document name
if 'name' in document_data and document_data['name']:
document.name = document_data['name']
# save process rule
if 'process_rule' in document_data and document_data['process_rule']:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
document.dataset_process_rule_id = dataset_process_rule.id
# update document data source
if 'data_source' in document_data and document_data['data_source']:
file_name = ''
data_source_info = {}
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document.data_source_type = document_data["data_source"]["type"]
document.data_source_info = json.dumps(data_source_info)
document.name = file_name
# update document to be waiting
document.indexing_status = 'waiting'
document.completed_at = None
document.processing_started_at = None
document.parsing_completed_at = None
document.cleaning_completed_at = None
document.splitting_completed_at = None
document.updated_at = datetime.datetime.utcnow()
document.created_from = created_from
document.doc_form = document_data['doc_form']
db.session.add(document)
db.session.commit()
# update document segment
update_params = {
DocumentSegment.status: 're_segment'
}
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
db.session.commit()
# trigger async task
document_indexing_update_task.delay(document.dataset_id, document.id)
return document
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
embedding_model = None
dataset_collection_binding_id = None
retrieval_model = None
if document_data['indexing_technique'] == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=tenant_id
)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.model_provider.provider_name,
embedding_model.name
)
dataset_collection_binding_id = dataset_collection_binding.id
if 'retrieval_model' in document_data and document_data['retrieval_model']:
retrieval_model = document_data['retrieval_model']
else:
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
retrieval_model = default_retrieval_model
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
name='',
data_source_type=document_data["data_source"]["type"],
indexing_technique=document_data["indexing_technique"],
created_by=account.id,
embedding_model=embedding_model.name if embedding_model else None,
embedding_model_provider=embedding_model.model_provider.provider_name if embedding_model else None,
collection_binding_id=dataset_collection_binding_id,
retrieval_model=retrieval_model
)
db.session.add(dataset)
db.session.flush()
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
cut_length = 18
cut_name = documents[0].name[:cut_length]
dataset.name = cut_name + '...'
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
db.session.commit()
return dataset, documents, batch
@classmethod
def document_create_args_validate(cls, args: dict):
if 'original_document_id' not in args or not args['original_document_id']:
DocumentService.data_source_args_validate(args)
DocumentService.process_rule_args_validate(args)
else:
if ('data_source' not in args and not args['data_source']) \
and ('process_rule' not in args and not args['process_rule']):
raise ValueError("Data source or Process rule is required")
else:
if 'data_source' in args and args['data_source']:
DocumentService.data_source_args_validate(args)
if 'process_rule' in args and args['process_rule']:
DocumentService.process_rule_args_validate(args)
@classmethod
def data_source_args_validate(cls, args: dict):
if 'data_source' not in args or not args['data_source']:
raise ValueError("Data source is required")
if not isinstance(args['data_source'], dict):
raise ValueError("Data source is invalid")
if 'type' not in args['data_source'] or not args['data_source']['type']:
raise ValueError("Data source type is required")
if args['data_source']['type'] not in Document.DATA_SOURCES:
raise ValueError("Data source type is invalid")
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
raise ValueError("Data source info is required")
if args['data_source']['type'] == 'upload_file':
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'file_info_list']:
raise ValueError("File source info is required")
if args['data_source']['type'] == 'notion_import':
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'notion_info_list']:
raise ValueError("Notion source info is required")
@classmethod
def process_rule_args_validate(cls, args: dict):
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
@classmethod
def estimate_args_validate(cls, args: dict):
if 'info_list' not in args or not args['info_list']:
raise ValueError("Data source info is required")
if not isinstance(args['info_list'], dict):
raise ValueError("Data info is invalid")
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
class SegmentService:
@classmethod
def segment_create_args_validate(cls, args: dict, document: Document):
if document.doc_form == 'qa_model':
if 'answer' not in args or not args['answer']:
raise ValueError("Answer is required")
if not args['answer'].strip():
raise ValueError("Answer is empty")
if 'content' not in args or not args['content'] or not args['content'].strip():
raise ValueError("Content is empty")
@classmethod
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
content = args['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.utcnow(),
completed_at=datetime.datetime.utcnow(),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = args['answer']
db.session.add(segment_document)
db.session.commit()
# save vector index
try:
VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.utcnow()
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment
@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
embedding_model = None
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
pre_segment_data_list = []
segment_data_list = []
for segment_item in segments:
content = segment_item['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality' and embedding_model:
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.utcnow(),
completed_at=datetime.datetime.utcnow(),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = segment_item['answer']
db.session.add(segment_document)
segment_data_list.append(segment_document)
pre_segment_data = {
'segment': segment_document,
'keywords': segment_item['keywords']
}
pre_segment_data_list.append(pre_segment_data)
try:
# save vector index
VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.utcnow()
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
return segment_data_list
@classmethod
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is indexing, please try again later")
try:
content = args['content']
if segment.content == content:
if document.doc_form == 'qa_model':
segment.answer = args['answer']
if args['keywords']:
segment.keywords = args['keywords']
if args['enabled'] is not None:
segment.enabled = args['enabled']
db.session.add(segment)
db.session.commit()
# update segment index task
if args['keywords']:
kw_index = IndexBuilder.get_index(dataset, 'economy')
# delete from keyword index
kw_index.delete_by_ids([segment.index_node_id])
# save keyword index
kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
embedding_model = ModelFactory.get_embedding_model(
tenant_id=dataset.tenant_id,
model_provider_name=dataset.embedding_model_provider,
model_name=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_num_tokens(content)
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
segment.tokens = tokens
segment.status = 'completed'
segment.indexing_at = datetime.datetime.utcnow()
segment.completed_at = datetime.datetime.utcnow()
segment.updated_by = current_user.id
segment.updated_at = datetime.datetime.utcnow()
if document.doc_form == 'qa_model':
segment.answer = args['answer']
db.session.add(segment)
db.session.commit()
# update segment vector index
VectorService.update_segment_vector(args['keywords'], segment, dataset)
except Exception as e:
logging.exception("update segment index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.utcnow()
segment.status = 'error'
segment.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
return segment
@classmethod
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is deleting.")
# enabled segment need to delete index
if segment.enabled:
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
db.session.delete(segment)
db.session.commit()
class DatasetCollectionBindingService:
@classmethod
def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
collection_type: str = 'dataset') -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == provider_name,
DatasetCollectionBinding.model_name == model_name,
DatasetCollectionBinding.type == collection_type). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=provider_name,
model_name=model_name,
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
type=collection_type
)
db.session.add(dataset_collection_binding)
db.session.commit()
return dataset_collection_binding
@classmethod
def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
collection_type: str = 'dataset') -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == collection_binding_id,
DatasetCollectionBinding.type == collection_type). \
order_by(DatasetCollectionBinding.created_at). \
first()
return dataset_collection_binding