dify/api
tmuife 6a09409ec9
Add Oracle23ai as a vector datasource (#5342)
Co-authored-by: walter from vm <walter.jin@oracle.com>
2024-06-22 01:48:07 +08:00
..
.vscode build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
configs Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
constants feat: Added hindi translation i18n (#5240) 2024-06-15 21:01:03 +08:00
controllers Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
core Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
docker feat: add flask upgrade-db command for running db upgrade with redis lock (#5333) 2024-06-18 13:26:01 +08:00
events feat: support opensearch approximate k-NN (#5322) 2024-06-19 12:44:33 +08:00
extensions feat: introduce pydantic-settings for config definition and validation (#5202) 2024-06-19 13:41:12 +08:00
fields feat: option to hide workflow steps (#5436) 2024-06-21 12:51:10 +08:00
libs feat(api/auth): switch-to-stateful-authentication (#5438) 2024-06-21 12:39:07 +08:00
migrations feat: option to hide workflow steps (#5436) 2024-06-21 12:51:10 +08:00
models feat: option to hide workflow steps (#5436) 2024-06-21 12:51:10 +08:00
schedule Feat/dify rag (#2528) 2024-02-22 23:31:57 +08:00
services feat(api/auth): switch-to-stateful-authentication (#5438) 2024-06-21 12:39:07 +08:00
tasks Feat/firecrawl data source (#5232) 2024-06-15 02:46:02 +08:00
templates fix: email template style (#1914) 2024-01-04 16:53:11 +08:00
tests Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
.dockerignore build: support Poetry for depencencies tool in api's Dockerfile (#5105) 2024-06-22 01:34:08 +08:00
.env.example feat: support tencent cos storage (#5297) 2024-06-17 19:18:52 +08:00
app.py feat(api/auth): switch-to-stateful-authentication (#5438) 2024-06-21 12:39:07 +08:00
commands.py feat: support opensearch approximate k-NN (#5322) 2024-06-19 12:44:33 +08:00
config.py refactor: extract vdb configs into pydantic-setting based dify configs (#5426) 2024-06-20 16:24:10 +08:00
Dockerfile build: support Poetry for depencencies tool in api's Dockerfile (#5105) 2024-06-22 01:34:08 +08:00
poetry.lock Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
poetry.toml build: initial support for poetry build tool (#4513) 2024-06-11 13:11:28 +08:00
pyproject.toml Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00
README.md docs(api/README): Remove unnecessary = (#5380) 2024-06-19 15:17:13 +08:00
requirements-dev.txt chore: skip explicit installing jinja2 as testing dependency (#4845) 2024-06-02 09:49:20 +08:00
requirements.txt Add Oracle23ai as a vector datasource (#5342) 2024-06-22 01:48:07 +08:00

Dify Backend API

Usage

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

    Using pip can be found below.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh
    

Usage with pip

Note

In the next version, we will deprecate pip as the primary package management tool for dify api service, currently Poetry and pip coexist.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    docker-compose -f docker-compose.middleware.yaml -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
  4. Create environment.

    If you use Anaconda, create a new environment and activate it

    conda create --name dify python=3.10
    conda activate dify
    
  5. Install dependencies

    pip install -r requirements.txt
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    flask db upgrade
    
  7. Start backend:

    flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Setup your application by visiting http://localhost:5001/console/api/setup or other apis...

  9. If you need to debug local async processing, please start the worker service.

    celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail
    

    The started celery app handles the async tasks, e.g. dataset importing and documents indexing.