mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
6355e61eb8
Co-authored-by: luowei <glpat-EjySCyNjWiLqAED-YmwM> Co-authored-by: crazywoola <427733928@qq.com> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: Yeuoly <45712896+Yeuoly@users.noreply.github.com>
524 lines
22 KiB
Python
524 lines
22 KiB
Python
import re
|
|
import uuid
|
|
|
|
from core.agent.agent_executor import PlanningStrategy
|
|
from core.external_data_tool.factory import ExternalDataToolFactory
|
|
from core.model_runtime.entities.model_entities import ModelPropertyKey, ModelType
|
|
from core.model_runtime.model_providers import model_provider_factory
|
|
from core.moderation.factory import ModerationFactory
|
|
from core.prompt.prompt_transform import AppMode
|
|
from core.provider_manager import ProviderManager
|
|
from models.account import Account
|
|
from services.dataset_service import DatasetService
|
|
|
|
SUPPORT_TOOLS = ["dataset", "google_search", "web_reader", "wikipedia", "current_datetime"]
|
|
|
|
|
|
class AppModelConfigService:
|
|
@classmethod
|
|
def is_dataset_exists(cls, account: Account, dataset_id: str) -> bool:
|
|
# verify if the dataset ID exists
|
|
dataset = DatasetService.get_dataset(dataset_id)
|
|
|
|
if not dataset:
|
|
return False
|
|
|
|
if dataset.tenant_id != account.current_tenant_id:
|
|
return False
|
|
|
|
return True
|
|
|
|
@classmethod
|
|
def validate_model_completion_params(cls, cp: dict, model_name: str) -> dict:
|
|
# 6. model.completion_params
|
|
if not isinstance(cp, dict):
|
|
raise ValueError("model.completion_params must be of object type")
|
|
|
|
# stop
|
|
if 'stop' not in cp:
|
|
cp["stop"] = []
|
|
elif not isinstance(cp["stop"], list):
|
|
raise ValueError("stop in model.completion_params must be of list type")
|
|
|
|
if len(cp["stop"]) > 4:
|
|
raise ValueError("stop sequences must be less than 4")
|
|
|
|
return cp
|
|
|
|
@classmethod
|
|
def validate_configuration(cls, tenant_id: str, account: Account, config: dict, app_mode: str) -> dict:
|
|
# opening_statement
|
|
if 'opening_statement' not in config or not config["opening_statement"]:
|
|
config["opening_statement"] = ""
|
|
|
|
if not isinstance(config["opening_statement"], str):
|
|
raise ValueError("opening_statement must be of string type")
|
|
|
|
# suggested_questions
|
|
if 'suggested_questions' not in config or not config["suggested_questions"]:
|
|
config["suggested_questions"] = []
|
|
|
|
if not isinstance(config["suggested_questions"], list):
|
|
raise ValueError("suggested_questions must be of list type")
|
|
|
|
for question in config["suggested_questions"]:
|
|
if not isinstance(question, str):
|
|
raise ValueError("Elements in suggested_questions list must be of string type")
|
|
|
|
# suggested_questions_after_answer
|
|
if 'suggested_questions_after_answer' not in config or not config["suggested_questions_after_answer"]:
|
|
config["suggested_questions_after_answer"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["suggested_questions_after_answer"], dict):
|
|
raise ValueError("suggested_questions_after_answer must be of dict type")
|
|
|
|
if "enabled" not in config["suggested_questions_after_answer"] or not config["suggested_questions_after_answer"]["enabled"]:
|
|
config["suggested_questions_after_answer"]["enabled"] = False
|
|
|
|
if not isinstance(config["suggested_questions_after_answer"]["enabled"], bool):
|
|
raise ValueError("enabled in suggested_questions_after_answer must be of boolean type")
|
|
|
|
# speech_to_text
|
|
if 'speech_to_text' not in config or not config["speech_to_text"]:
|
|
config["speech_to_text"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["speech_to_text"], dict):
|
|
raise ValueError("speech_to_text must be of dict type")
|
|
|
|
if "enabled" not in config["speech_to_text"] or not config["speech_to_text"]["enabled"]:
|
|
config["speech_to_text"]["enabled"] = False
|
|
|
|
if not isinstance(config["speech_to_text"]["enabled"], bool):
|
|
raise ValueError("enabled in speech_to_text must be of boolean type")
|
|
|
|
# text_to_speech
|
|
if 'text_to_speech' not in config or not config["text_to_speech"]:
|
|
config["text_to_speech"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["text_to_speech"], dict):
|
|
raise ValueError("text_to_speech must be of dict type")
|
|
|
|
if "enabled" not in config["text_to_speech"] or not config["text_to_speech"]["enabled"]:
|
|
config["text_to_speech"]["enabled"] = False
|
|
|
|
if not isinstance(config["text_to_speech"]["enabled"], bool):
|
|
raise ValueError("enabled in text_to_speech must be of boolean type")
|
|
|
|
# return retriever resource
|
|
if 'retriever_resource' not in config or not config["retriever_resource"]:
|
|
config["retriever_resource"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["retriever_resource"], dict):
|
|
raise ValueError("retriever_resource must be of dict type")
|
|
|
|
if "enabled" not in config["retriever_resource"] or not config["retriever_resource"]["enabled"]:
|
|
config["retriever_resource"]["enabled"] = False
|
|
|
|
if not isinstance(config["retriever_resource"]["enabled"], bool):
|
|
raise ValueError("enabled in retriever_resource must be of boolean type")
|
|
|
|
# more_like_this
|
|
if 'more_like_this' not in config or not config["more_like_this"]:
|
|
config["more_like_this"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["more_like_this"], dict):
|
|
raise ValueError("more_like_this must be of dict type")
|
|
|
|
if "enabled" not in config["more_like_this"] or not config["more_like_this"]["enabled"]:
|
|
config["more_like_this"]["enabled"] = False
|
|
|
|
if not isinstance(config["more_like_this"]["enabled"], bool):
|
|
raise ValueError("enabled in more_like_this must be of boolean type")
|
|
|
|
# model
|
|
if 'model' not in config:
|
|
raise ValueError("model is required")
|
|
|
|
if not isinstance(config["model"], dict):
|
|
raise ValueError("model must be of object type")
|
|
|
|
# model.provider
|
|
provider_entities = model_provider_factory.get_providers()
|
|
model_provider_names = [provider.provider for provider in provider_entities]
|
|
if 'provider' not in config["model"] or config["model"]["provider"] not in model_provider_names:
|
|
raise ValueError(f"model.provider is required and must be in {str(model_provider_names)}")
|
|
|
|
# model.name
|
|
if 'name' not in config["model"]:
|
|
raise ValueError("model.name is required")
|
|
|
|
provider_manager = ProviderManager()
|
|
models = provider_manager.get_configurations(tenant_id).get_models(
|
|
provider=config["model"]["provider"],
|
|
model_type=ModelType.LLM
|
|
)
|
|
if not models:
|
|
raise ValueError("model.name must be in the specified model list")
|
|
|
|
model_ids = [m.model for m in models]
|
|
if config["model"]["name"] not in model_ids:
|
|
raise ValueError("model.name must be in the specified model list")
|
|
|
|
model_mode = None
|
|
for model in models:
|
|
if model.model == config["model"]["name"]:
|
|
model_mode = model.model_properties.get(ModelPropertyKey.MODE)
|
|
break
|
|
|
|
# model.mode
|
|
if model_mode:
|
|
config['model']["mode"] = model_mode
|
|
else:
|
|
config['model']["mode"] = "completion"
|
|
|
|
# model.completion_params
|
|
if 'completion_params' not in config["model"]:
|
|
raise ValueError("model.completion_params is required")
|
|
|
|
config["model"]["completion_params"] = cls.validate_model_completion_params(
|
|
config["model"]["completion_params"],
|
|
config["model"]["name"]
|
|
)
|
|
|
|
# user_input_form
|
|
if "user_input_form" not in config or not config["user_input_form"]:
|
|
config["user_input_form"] = []
|
|
|
|
if not isinstance(config["user_input_form"], list):
|
|
raise ValueError("user_input_form must be a list of objects")
|
|
|
|
variables = []
|
|
for item in config["user_input_form"]:
|
|
key = list(item.keys())[0]
|
|
if key not in ["text-input", "select", "paragraph", "external_data_tool"]:
|
|
raise ValueError("Keys in user_input_form list can only be 'text-input', 'paragraph' or 'select'")
|
|
|
|
form_item = item[key]
|
|
if 'label' not in form_item:
|
|
raise ValueError("label is required in user_input_form")
|
|
|
|
if not isinstance(form_item["label"], str):
|
|
raise ValueError("label in user_input_form must be of string type")
|
|
|
|
if 'variable' not in form_item:
|
|
raise ValueError("variable is required in user_input_form")
|
|
|
|
if not isinstance(form_item["variable"], str):
|
|
raise ValueError("variable in user_input_form must be of string type")
|
|
|
|
pattern = re.compile(r"^(?!\d)[\u4e00-\u9fa5A-Za-z0-9_\U0001F300-\U0001F64F\U0001F680-\U0001F6FF]{1,100}$")
|
|
if pattern.match(form_item["variable"]) is None:
|
|
raise ValueError("variable in user_input_form must be a string, "
|
|
"and cannot start with a number")
|
|
|
|
variables.append(form_item["variable"])
|
|
|
|
if 'required' not in form_item or not form_item["required"]:
|
|
form_item["required"] = False
|
|
|
|
if not isinstance(form_item["required"], bool):
|
|
raise ValueError("required in user_input_form must be of boolean type")
|
|
|
|
if key == "select":
|
|
if 'options' not in form_item or not form_item["options"]:
|
|
form_item["options"] = []
|
|
|
|
if not isinstance(form_item["options"], list):
|
|
raise ValueError("options in user_input_form must be a list of strings")
|
|
|
|
if "default" in form_item and form_item['default'] \
|
|
and form_item["default"] not in form_item["options"]:
|
|
raise ValueError("default value in user_input_form must be in the options list")
|
|
|
|
# pre_prompt
|
|
if "pre_prompt" not in config or not config["pre_prompt"]:
|
|
config["pre_prompt"] = ""
|
|
|
|
if not isinstance(config["pre_prompt"], str):
|
|
raise ValueError("pre_prompt must be of string type")
|
|
|
|
# agent_mode
|
|
if "agent_mode" not in config or not config["agent_mode"]:
|
|
config["agent_mode"] = {
|
|
"enabled": False,
|
|
"tools": []
|
|
}
|
|
|
|
if not isinstance(config["agent_mode"], dict):
|
|
raise ValueError("agent_mode must be of object type")
|
|
|
|
if "enabled" not in config["agent_mode"] or not config["agent_mode"]["enabled"]:
|
|
config["agent_mode"]["enabled"] = False
|
|
|
|
if not isinstance(config["agent_mode"]["enabled"], bool):
|
|
raise ValueError("enabled in agent_mode must be of boolean type")
|
|
|
|
if "strategy" not in config["agent_mode"] or not config["agent_mode"]["strategy"]:
|
|
config["agent_mode"]["strategy"] = PlanningStrategy.ROUTER.value
|
|
|
|
if config["agent_mode"]["strategy"] not in [member.value for member in list(PlanningStrategy.__members__.values())]:
|
|
raise ValueError("strategy in agent_mode must be in the specified strategy list")
|
|
|
|
if "tools" not in config["agent_mode"] or not config["agent_mode"]["tools"]:
|
|
config["agent_mode"]["tools"] = []
|
|
|
|
if not isinstance(config["agent_mode"]["tools"], list):
|
|
raise ValueError("tools in agent_mode must be a list of objects")
|
|
|
|
for tool in config["agent_mode"]["tools"]:
|
|
key = list(tool.keys())[0]
|
|
if key in SUPPORT_TOOLS:
|
|
# old style, use tool name as key
|
|
tool_item = tool[key]
|
|
|
|
if "enabled" not in tool_item or not tool_item["enabled"]:
|
|
tool_item["enabled"] = False
|
|
|
|
if not isinstance(tool_item["enabled"], bool):
|
|
raise ValueError("enabled in agent_mode.tools must be of boolean type")
|
|
|
|
if key == "dataset":
|
|
if 'id' not in tool_item:
|
|
raise ValueError("id is required in dataset")
|
|
|
|
try:
|
|
uuid.UUID(tool_item["id"])
|
|
except ValueError:
|
|
raise ValueError("id in dataset must be of UUID type")
|
|
|
|
if not cls.is_dataset_exists(account, tool_item["id"]):
|
|
raise ValueError("Dataset ID does not exist, please check your permission.")
|
|
else:
|
|
# latest style, use key-value pair
|
|
if "enabled" not in tool or not tool["enabled"]:
|
|
tool["enabled"] = False
|
|
if "provider_type" not in tool:
|
|
raise ValueError("provider_type is required in agent_mode.tools")
|
|
if "provider_id" not in tool:
|
|
raise ValueError("provider_id is required in agent_mode.tools")
|
|
if "tool_name" not in tool:
|
|
raise ValueError("tool_name is required in agent_mode.tools")
|
|
if "tool_parameters" not in tool:
|
|
raise ValueError("tool_parameters is required in agent_mode.tools")
|
|
|
|
# dataset_query_variable
|
|
cls.is_dataset_query_variable_valid(config, app_mode)
|
|
|
|
# advanced prompt validation
|
|
cls.is_advanced_prompt_valid(config, app_mode)
|
|
|
|
# external data tools validation
|
|
cls.is_external_data_tools_valid(tenant_id, config)
|
|
|
|
# moderation validation
|
|
cls.is_moderation_valid(tenant_id, config)
|
|
|
|
# file upload validation
|
|
cls.is_file_upload_valid(config)
|
|
|
|
# Filter out extra parameters
|
|
filtered_config = {
|
|
"opening_statement": config["opening_statement"],
|
|
"suggested_questions": config["suggested_questions"],
|
|
"suggested_questions_after_answer": config["suggested_questions_after_answer"],
|
|
"speech_to_text": config["speech_to_text"],
|
|
"text_to_speech": config["text_to_speech"],
|
|
"retriever_resource": config["retriever_resource"],
|
|
"more_like_this": config["more_like_this"],
|
|
"sensitive_word_avoidance": config["sensitive_word_avoidance"],
|
|
"external_data_tools": config["external_data_tools"],
|
|
"model": {
|
|
"provider": config["model"]["provider"],
|
|
"name": config["model"]["name"],
|
|
"mode": config['model']["mode"],
|
|
"completion_params": config["model"]["completion_params"]
|
|
},
|
|
"user_input_form": config["user_input_form"],
|
|
"dataset_query_variable": config.get('dataset_query_variable'),
|
|
"pre_prompt": config["pre_prompt"],
|
|
"agent_mode": config["agent_mode"],
|
|
"prompt_type": config["prompt_type"],
|
|
"chat_prompt_config": config["chat_prompt_config"],
|
|
"completion_prompt_config": config["completion_prompt_config"],
|
|
"dataset_configs": config["dataset_configs"],
|
|
"file_upload": config["file_upload"]
|
|
}
|
|
|
|
return filtered_config
|
|
|
|
@classmethod
|
|
def is_moderation_valid(cls, tenant_id: str, config: dict):
|
|
if 'sensitive_word_avoidance' not in config or not config["sensitive_word_avoidance"]:
|
|
config["sensitive_word_avoidance"] = {
|
|
"enabled": False
|
|
}
|
|
|
|
if not isinstance(config["sensitive_word_avoidance"], dict):
|
|
raise ValueError("sensitive_word_avoidance must be of dict type")
|
|
|
|
if "enabled" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["enabled"]:
|
|
config["sensitive_word_avoidance"]["enabled"] = False
|
|
|
|
if not config["sensitive_word_avoidance"]["enabled"]:
|
|
return
|
|
|
|
if "type" not in config["sensitive_word_avoidance"] or not config["sensitive_word_avoidance"]["type"]:
|
|
raise ValueError("sensitive_word_avoidance.type is required")
|
|
|
|
type = config["sensitive_word_avoidance"]["type"]
|
|
config = config["sensitive_word_avoidance"]["config"]
|
|
|
|
ModerationFactory.validate_config(
|
|
name=type,
|
|
tenant_id=tenant_id,
|
|
config=config
|
|
)
|
|
|
|
@classmethod
|
|
def is_file_upload_valid(cls, config: dict):
|
|
if 'file_upload' not in config or not config["file_upload"]:
|
|
config["file_upload"] = {}
|
|
|
|
if not isinstance(config["file_upload"], dict):
|
|
raise ValueError("file_upload must be of dict type")
|
|
|
|
# check image config
|
|
if 'image' not in config["file_upload"] or not config["file_upload"]["image"]:
|
|
config["file_upload"]["image"] = {"enabled": False}
|
|
|
|
if config['file_upload']['image']['enabled']:
|
|
number_limits = config['file_upload']['image']['number_limits']
|
|
if number_limits < 1 or number_limits > 6:
|
|
raise ValueError("number_limits must be in [1, 6]")
|
|
|
|
detail = config['file_upload']['image']['detail']
|
|
if detail not in ['high', 'low']:
|
|
raise ValueError("detail must be in ['high', 'low']")
|
|
|
|
transfer_methods = config['file_upload']['image']['transfer_methods']
|
|
if not isinstance(transfer_methods, list):
|
|
raise ValueError("transfer_methods must be of list type")
|
|
for method in transfer_methods:
|
|
if method not in ['remote_url', 'local_file']:
|
|
raise ValueError("transfer_methods must be in ['remote_url', 'local_file']")
|
|
|
|
@classmethod
|
|
def is_external_data_tools_valid(cls, tenant_id: str, config: dict):
|
|
if 'external_data_tools' not in config or not config["external_data_tools"]:
|
|
config["external_data_tools"] = []
|
|
|
|
if not isinstance(config["external_data_tools"], list):
|
|
raise ValueError("external_data_tools must be of list type")
|
|
|
|
for tool in config["external_data_tools"]:
|
|
if "enabled" not in tool or not tool["enabled"]:
|
|
tool["enabled"] = False
|
|
|
|
if not tool["enabled"]:
|
|
continue
|
|
|
|
if "type" not in tool or not tool["type"]:
|
|
raise ValueError("external_data_tools[].type is required")
|
|
|
|
type = tool["type"]
|
|
config = tool["config"]
|
|
|
|
ExternalDataToolFactory.validate_config(
|
|
name=type,
|
|
tenant_id=tenant_id,
|
|
config=config
|
|
)
|
|
|
|
@classmethod
|
|
def is_dataset_query_variable_valid(cls, config: dict, mode: str) -> None:
|
|
# Only check when mode is completion
|
|
if mode != 'completion':
|
|
return
|
|
|
|
agent_mode = config.get("agent_mode", {})
|
|
tools = agent_mode.get("tools", [])
|
|
dataset_exists = "dataset" in str(tools)
|
|
|
|
dataset_query_variable = config.get("dataset_query_variable")
|
|
|
|
if dataset_exists and not dataset_query_variable:
|
|
raise ValueError("Dataset query variable is required when dataset is exist")
|
|
|
|
@classmethod
|
|
def is_advanced_prompt_valid(cls, config: dict, app_mode: str) -> None:
|
|
# prompt_type
|
|
if 'prompt_type' not in config or not config["prompt_type"]:
|
|
config["prompt_type"] = "simple"
|
|
|
|
if config['prompt_type'] not in ['simple', 'advanced']:
|
|
raise ValueError("prompt_type must be in ['simple', 'advanced']")
|
|
|
|
# chat_prompt_config
|
|
if 'chat_prompt_config' not in config or not config["chat_prompt_config"]:
|
|
config["chat_prompt_config"] = {}
|
|
|
|
if not isinstance(config["chat_prompt_config"], dict):
|
|
raise ValueError("chat_prompt_config must be of object type")
|
|
|
|
# completion_prompt_config
|
|
if 'completion_prompt_config' not in config or not config["completion_prompt_config"]:
|
|
config["completion_prompt_config"] = {}
|
|
|
|
if not isinstance(config["completion_prompt_config"], dict):
|
|
raise ValueError("completion_prompt_config must be of object type")
|
|
|
|
# dataset_configs
|
|
if 'dataset_configs' not in config or not config["dataset_configs"]:
|
|
config["dataset_configs"] = {'retrieval_model': 'single'}
|
|
|
|
if 'datasets' not in config["dataset_configs"] or not config["dataset_configs"]["datasets"]:
|
|
config["dataset_configs"]["datasets"] = {
|
|
"strategy": "router",
|
|
"datasets": []
|
|
}
|
|
|
|
if not isinstance(config["dataset_configs"], dict):
|
|
raise ValueError("dataset_configs must be of object type")
|
|
|
|
if config["dataset_configs"]['retrieval_model'] == 'multiple':
|
|
if not config["dataset_configs"]['reranking_model']:
|
|
raise ValueError("reranking_model has not been set")
|
|
if not isinstance(config["dataset_configs"]['reranking_model'], dict):
|
|
raise ValueError("reranking_model must be of object type")
|
|
|
|
if not isinstance(config["dataset_configs"], dict):
|
|
raise ValueError("dataset_configs must be of object type")
|
|
|
|
if config['prompt_type'] == 'advanced':
|
|
if not config['chat_prompt_config'] and not config['completion_prompt_config']:
|
|
raise ValueError("chat_prompt_config or completion_prompt_config is required when prompt_type is advanced")
|
|
|
|
if config['model']["mode"] not in ['chat', 'completion']:
|
|
raise ValueError("model.mode must be in ['chat', 'completion'] when prompt_type is advanced")
|
|
|
|
if app_mode == AppMode.CHAT.value and config['model']["mode"] == "completion":
|
|
user_prefix = config['completion_prompt_config']['conversation_histories_role']['user_prefix']
|
|
assistant_prefix = config['completion_prompt_config']['conversation_histories_role']['assistant_prefix']
|
|
|
|
if not user_prefix:
|
|
config['completion_prompt_config']['conversation_histories_role']['user_prefix'] = 'Human'
|
|
|
|
if not assistant_prefix:
|
|
config['completion_prompt_config']['conversation_histories_role']['assistant_prefix'] = 'Assistant'
|
|
|
|
if config['model']["mode"] == "chat":
|
|
prompt_list = config['chat_prompt_config']['prompt']
|
|
|
|
if len(prompt_list) > 10:
|
|
raise ValueError("prompt messages must be less than 10")
|