dify/api/tasks/add_document_to_index_task.py
2023-05-15 08:51:32 +08:00

100 lines
3.0 KiB
Python

import datetime
import logging
import time
import click
from celery import shared_task
from llama_index.data_structs import Node
from llama_index.data_structs.node_v2 import DocumentRelationship
from werkzeug.exceptions import NotFound
from core.index.keyword_table_index import KeywordTableIndex
from core.index.vector_index import VectorIndex
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from models.dataset import DocumentSegment, Document
@shared_task
def add_document_to_index_task(document_id: str):
"""
Async Add document to index
:param document_id:
Usage: add_document_to_index.delay(document_id)
"""
logging.info(click.style('Start add document to index: {}'.format(document_id), fg='green'))
start_at = time.perf_counter()
document = db.session.query(Document).filter(Document.id == document_id).first()
if not document:
raise NotFound('Document not found')
if document.indexing_status != 'completed':
return
indexing_cache_key = 'document_{}_indexing'.format(document.id)
try:
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == document.id,
DocumentSegment.enabled == True
) \
.order_by(DocumentSegment.position.asc()).all()
nodes = []
previous_node = None
for segment in segments:
relationships = {
DocumentRelationship.SOURCE: document.id
}
if previous_node:
relationships[DocumentRelationship.PREVIOUS] = previous_node.doc_id
previous_node.relationships[DocumentRelationship.NEXT] = segment.index_node_id
node = Node(
doc_id=segment.index_node_id,
doc_hash=segment.index_node_hash,
text=segment.content,
extra_info=None,
node_info=None,
relationships=relationships
)
previous_node = node
nodes.append(node)
dataset = document.dataset
if not dataset:
raise Exception('Document has no dataset')
vector_index = VectorIndex(dataset=dataset)
keyword_table_index = KeywordTableIndex(dataset=dataset)
# save vector index
if dataset.indexing_technique == "high_quality":
vector_index.add_nodes(
nodes=nodes,
duplicate_check=True
)
# save keyword index
keyword_table_index.add_nodes(nodes)
end_at = time.perf_counter()
logging.info(
click.style('Document added to index: {} latency: {}'.format(document.id, end_at - start_at), fg='green'))
except Exception as e:
logging.exception("add document to index failed")
document.enabled = False
document.disabled_at = datetime.datetime.utcnow()
document.status = 'error'
document.error = str(e)
db.session.commit()
finally:
redis_client.delete(indexing_cache_key)