mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
3241e4015b
Co-authored-by: jyong <718720800@qq.com>
111 lines
4.0 KiB
Python
111 lines
4.0 KiB
Python
from typing import Optional, List, cast
|
|
|
|
from langchain.chains import SequentialChain
|
|
from langchain.chains.base import Chain
|
|
from langchain.memory.chat_memory import BaseChatMemory
|
|
|
|
from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
|
|
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
|
from core.chain.chain_builder import ChainBuilder
|
|
from core.chain.multi_dataset_router_chain import MultiDatasetRouterChain
|
|
from core.conversation_message_task import ConversationMessageTask
|
|
from extensions.ext_database import db
|
|
from models.dataset import Dataset
|
|
|
|
|
|
class MainChainBuilder:
|
|
@classmethod
|
|
def to_langchain_components(cls, tenant_id: str, agent_mode: dict, memory: Optional[BaseChatMemory],
|
|
rest_tokens: int,
|
|
conversation_message_task: ConversationMessageTask):
|
|
first_input_key = "input"
|
|
final_output_key = "output"
|
|
|
|
chains = []
|
|
|
|
chain_callback_handler = MainChainGatherCallbackHandler(conversation_message_task)
|
|
|
|
# agent mode
|
|
tool_chains, chains_output_key = cls.get_agent_chains(
|
|
tenant_id=tenant_id,
|
|
agent_mode=agent_mode,
|
|
rest_tokens=rest_tokens,
|
|
memory=memory,
|
|
conversation_message_task=conversation_message_task
|
|
)
|
|
chains += tool_chains
|
|
|
|
if chains_output_key:
|
|
final_output_key = chains_output_key
|
|
|
|
if len(chains) == 0:
|
|
return None
|
|
|
|
for chain in chains:
|
|
chain = cast(Chain, chain)
|
|
chain.callbacks.append(chain_callback_handler)
|
|
|
|
# build main chain
|
|
overall_chain = SequentialChain(
|
|
chains=chains,
|
|
input_variables=[first_input_key],
|
|
output_variables=[final_output_key],
|
|
memory=memory, # only for use the memory prompt input key
|
|
)
|
|
|
|
return overall_chain
|
|
|
|
@classmethod
|
|
def get_agent_chains(cls, tenant_id: str, agent_mode: dict,
|
|
rest_tokens: int,
|
|
memory: Optional[BaseChatMemory],
|
|
conversation_message_task: ConversationMessageTask):
|
|
# agent mode
|
|
chains = []
|
|
if agent_mode and agent_mode.get('enabled'):
|
|
tools = agent_mode.get('tools', [])
|
|
|
|
pre_fixed_chains = []
|
|
# agent_tools = []
|
|
datasets = []
|
|
for tool in tools:
|
|
tool_type = list(tool.keys())[0]
|
|
tool_config = list(tool.values())[0]
|
|
if tool_type == 'sensitive-word-avoidance':
|
|
chain = ChainBuilder.to_sensitive_word_avoidance_chain(tool_config)
|
|
if chain:
|
|
pre_fixed_chains.append(chain)
|
|
elif tool_type == "dataset":
|
|
# get dataset from dataset id
|
|
dataset = db.session.query(Dataset).filter(
|
|
Dataset.tenant_id == tenant_id,
|
|
Dataset.id == tool_config.get("id")
|
|
).first()
|
|
|
|
if dataset:
|
|
datasets.append(dataset)
|
|
|
|
# add pre-fixed chains
|
|
chains += pre_fixed_chains
|
|
|
|
if len(datasets) > 0:
|
|
# tool to chain
|
|
multi_dataset_router_chain = MultiDatasetRouterChain.from_datasets(
|
|
tenant_id=tenant_id,
|
|
datasets=datasets,
|
|
conversation_message_task=conversation_message_task,
|
|
rest_tokens=rest_tokens,
|
|
callbacks=[DifyStdOutCallbackHandler()]
|
|
)
|
|
chains.append(multi_dataset_router_chain)
|
|
|
|
final_output_key = cls.get_chains_output_key(chains)
|
|
|
|
return chains, final_output_key
|
|
|
|
@classmethod
|
|
def get_chains_output_key(cls, chains: List[Chain]):
|
|
if len(chains) > 0:
|
|
return chains[-1].output_keys[0]
|
|
return None
|