dify/api/tasks/deal_dataset_vector_index_task.py
2023-07-31 13:13:08 +08:00

75 lines
2.8 KiB
Python

import logging
import time
import click
from celery import shared_task
from langchain.schema import Document
from core.index.index import IndexBuilder
from extensions.ext_database import db
from models.dataset import DocumentSegment, Dataset
from models.dataset import Document as DatasetDocument
@shared_task(queue='dataset')
def deal_dataset_vector_index_task(dataset_id: str, action: str):
"""
Async deal dataset from index
:param dataset_id: dataset_id
:param action: action
Usage: deal_dataset_vector_index_task.delay(dataset_id, action)
"""
logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green'))
start_at = time.perf_counter()
try:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise Exception('Dataset not found')
if action == "remove":
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
index.delete()
elif action == "add":
dataset_documents = db.session.query(DatasetDocument).filter(
DatasetDocument.dataset_id == dataset_id,
DatasetDocument.indexing_status == 'completed',
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).all()
if dataset_documents:
# save vector index
index = IndexBuilder.get_index(dataset, 'high_quality', ignore_high_quality_check=True)
documents = []
for dataset_document in dataset_documents:
# delete from vector index
segments = db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.enabled == True
) .order_by(DocumentSegment.position.asc()).all()
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
# save vector index
index.add_texts(documents)
end_at = time.perf_counter()
logging.info(
click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
except Exception:
logging.exception("Deal dataset vector index failed")