dify/api
2024-08-08 17:08:28 +08:00
..
configs version to 0.6.16 (#6972) 2024-08-05 23:33:37 +08:00
constants refactor(*): Update hard-code '[__HIDDEN__]' to the constant. (#7048) 2024-08-07 17:30:56 +08:00
contexts
controllers refactor(*): Update hard-code '[__HIDDEN__]' to the constant. (#7048) 2024-08-07 17:30:56 +08:00
core feat: add text-embedding functon and LLM models to Siliconflow (#7090) 2024-08-08 17:08:28 +08:00
docker fix: ensure db migration in docker entry script running with upgrade-db command for proper locking (#6946) 2024-08-05 10:55:26 +08:00
events
extensions
fields
libs
migrations
models
schedule
services workflow logs support workflow run id filter (#6833) 2024-08-08 14:54:02 +08:00
tasks fix: sending app trace data to other app trace provider (#6931) 2024-08-04 00:05:51 +08:00
templates
tests feat: add text-embedding functon and LLM models to Siliconflow (#7090) 2024-08-08 17:08:28 +08:00
.dockerignore
.env.example
app.py
commands.py
Dockerfile add nltk punkt resource (#7063) 2024-08-08 14:23:22 +08:00
poetry.lock chore: update duckduckgo tool (#6983) 2024-08-06 10:16:04 +08:00
poetry.toml
pyproject.toml chore: update duckduckgo tool (#6983) 2024-08-06 10:16:04 +08:00
README.md

Dify Backend API

Usage

Important

In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    cp middleware.env.example middleware.env
    # change the profile to other vector database if you are not using weaviate
    docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to debug local async processing, please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh