dify/api/tasks/duplicate_document_indexing_task.py
Jyong f257f2c396
Knowledge optimization (#3755)
Co-authored-by: crazywoola <427733928@qq.com>
Co-authored-by: JzoNg <jzongcode@gmail.com>
2024-04-24 15:02:29 +08:00

95 lines
3.5 KiB
Python

import datetime
import logging
import time
import click
from celery import shared_task
from flask import current_app
from core.indexing_runner import DocumentIsPausedException, IndexingRunner
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
from services.feature_service import FeatureService
@shared_task(queue='dataset')
def duplicate_document_indexing_task(dataset_id: str, document_ids: list):
"""
Async process document
:param dataset_id:
:param document_ids:
Usage: duplicate_document_indexing_task.delay(dataset_id, document_id)
"""
documents = []
start_at = time.perf_counter()
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
# check document limit
features = FeatureService.get_features(dataset.tenant_id)
try:
if features.billing.enabled:
vector_space = features.vector_space
count = len(document_ids)
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
if 0 < vector_space.limit <= vector_space.size:
raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
"your subscription.")
except Exception as e:
for document_id in document_ids:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
if document:
document.indexing_status = 'error'
document.error = str(e)
document.stopped_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
return
for document_id in document_ids:
logging.info(click.style('Start process document: {}'.format(document_id), fg='green'))
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
if document:
# clean old data
index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
# delete from vector index
index_processor.clean(dataset, index_node_ids)
for segment in segments:
db.session.delete(segment)
db.session.commit()
document.indexing_status = 'parsing'
document.processing_started_at = datetime.datetime.utcnow()
documents.append(document)
db.session.add(document)
db.session.commit()
try:
indexing_runner = IndexingRunner()
indexing_runner.run(documents)
end_at = time.perf_counter()
logging.info(click.style('Processed dataset: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green'))
except DocumentIsPausedException as ex:
logging.info(click.style(str(ex), fg='yellow'))
except Exception:
pass