mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
4588831bff
Co-authored-by: jyong <jyong@dify.ai>
769 lines
33 KiB
Python
769 lines
33 KiB
Python
import datetime
|
|
import json
|
|
import math
|
|
import random
|
|
import string
|
|
import threading
|
|
import time
|
|
import uuid
|
|
|
|
import click
|
|
import qdrant_client
|
|
from qdrant_client.http.models import TextIndexParams, TextIndexType, TokenizerType
|
|
from tqdm import tqdm
|
|
from flask import current_app, Flask
|
|
from langchain.embeddings import OpenAIEmbeddings
|
|
from werkzeug.exceptions import NotFound
|
|
|
|
from core.embedding.cached_embedding import CacheEmbedding
|
|
from core.index.index import IndexBuilder
|
|
from core.model_providers.model_factory import ModelFactory
|
|
from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
|
|
from core.model_providers.models.entity.model_params import ModelType
|
|
from core.model_providers.providers.hosted import hosted_model_providers
|
|
from core.model_providers.providers.openai_provider import OpenAIProvider
|
|
from libs.password import password_pattern, valid_password, hash_password
|
|
from libs.helper import email as email_validate
|
|
from extensions.ext_database import db
|
|
from libs.rsa import generate_key_pair
|
|
from models.account import InvitationCode, Tenant, TenantAccountJoin
|
|
from models.dataset import Dataset, DatasetQuery, Document, DatasetCollectionBinding
|
|
from models.model import Account, AppModelConfig, App
|
|
import secrets
|
|
import base64
|
|
|
|
from models.provider import Provider, ProviderType, ProviderQuotaType, ProviderModel
|
|
|
|
|
|
@click.command('reset-password', help='Reset the account password.')
|
|
@click.option('--email', prompt=True, help='The email address of the account whose password you need to reset')
|
|
@click.option('--new-password', prompt=True, help='the new password.')
|
|
@click.option('--password-confirm', prompt=True, help='the new password confirm.')
|
|
def reset_password(email, new_password, password_confirm):
|
|
if str(new_password).strip() != str(password_confirm).strip():
|
|
click.echo(click.style('sorry. The two passwords do not match.', fg='red'))
|
|
return
|
|
account = db.session.query(Account). \
|
|
filter(Account.email == email). \
|
|
one_or_none()
|
|
if not account:
|
|
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
|
return
|
|
try:
|
|
valid_password(new_password)
|
|
except:
|
|
click.echo(
|
|
click.style('sorry. The passwords must match {} '.format(password_pattern), fg='red'))
|
|
return
|
|
|
|
# generate password salt
|
|
salt = secrets.token_bytes(16)
|
|
base64_salt = base64.b64encode(salt).decode()
|
|
|
|
# encrypt password with salt
|
|
password_hashed = hash_password(new_password, salt)
|
|
base64_password_hashed = base64.b64encode(password_hashed).decode()
|
|
account.password = base64_password_hashed
|
|
account.password_salt = base64_salt
|
|
db.session.commit()
|
|
click.echo(click.style('Congratulations!, password has been reset.', fg='green'))
|
|
|
|
|
|
@click.command('reset-email', help='Reset the account email.')
|
|
@click.option('--email', prompt=True, help='The old email address of the account whose email you need to reset')
|
|
@click.option('--new-email', prompt=True, help='the new email.')
|
|
@click.option('--email-confirm', prompt=True, help='the new email confirm.')
|
|
def reset_email(email, new_email, email_confirm):
|
|
if str(new_email).strip() != str(email_confirm).strip():
|
|
click.echo(click.style('Sorry, new email and confirm email do not match.', fg='red'))
|
|
return
|
|
account = db.session.query(Account). \
|
|
filter(Account.email == email). \
|
|
one_or_none()
|
|
if not account:
|
|
click.echo(click.style('sorry. the account: [{}] not exist .'.format(email), fg='red'))
|
|
return
|
|
try:
|
|
email_validate(new_email)
|
|
except:
|
|
click.echo(
|
|
click.style('sorry. {} is not a valid email. '.format(email), fg='red'))
|
|
return
|
|
|
|
account.email = new_email
|
|
db.session.commit()
|
|
click.echo(click.style('Congratulations!, email has been reset.', fg='green'))
|
|
|
|
|
|
@click.command('reset-encrypt-key-pair', help='Reset the asymmetric key pair of workspace for encrypt LLM credentials. '
|
|
'After the reset, all LLM credentials will become invalid, '
|
|
'requiring re-entry.'
|
|
'Only support SELF_HOSTED mode.')
|
|
@click.confirmation_option(prompt=click.style('Are you sure you want to reset encrypt key pair?'
|
|
' this operation cannot be rolled back!', fg='red'))
|
|
def reset_encrypt_key_pair():
|
|
if current_app.config['EDITION'] != 'SELF_HOSTED':
|
|
click.echo(click.style('Sorry, only support SELF_HOSTED mode.', fg='red'))
|
|
return
|
|
|
|
tenant = db.session.query(Tenant).first()
|
|
if not tenant:
|
|
click.echo(click.style('Sorry, no workspace found. Please enter /install to initialize.', fg='red'))
|
|
return
|
|
|
|
tenant.encrypt_public_key = generate_key_pair(tenant.id)
|
|
|
|
db.session.query(Provider).filter(Provider.provider_type == 'custom').delete()
|
|
db.session.query(ProviderModel).delete()
|
|
db.session.commit()
|
|
|
|
click.echo(click.style('Congratulations! '
|
|
'the asymmetric key pair of workspace {} has been reset.'.format(tenant.id), fg='green'))
|
|
|
|
|
|
@click.command('generate-invitation-codes', help='Generate invitation codes.')
|
|
@click.option('--batch', help='The batch of invitation codes.')
|
|
@click.option('--count', prompt=True, help='Invitation codes count.')
|
|
def generate_invitation_codes(batch, count):
|
|
if not batch:
|
|
now = datetime.datetime.now()
|
|
batch = now.strftime('%Y%m%d%H%M%S')
|
|
|
|
if not count or int(count) <= 0:
|
|
click.echo(click.style('sorry. the count must be greater than 0.', fg='red'))
|
|
return
|
|
|
|
count = int(count)
|
|
|
|
click.echo('Start generate {} invitation codes for batch {}.'.format(count, batch))
|
|
|
|
codes = ''
|
|
for i in range(count):
|
|
code = generate_invitation_code()
|
|
invitation_code = InvitationCode(
|
|
code=code,
|
|
batch=batch
|
|
)
|
|
db.session.add(invitation_code)
|
|
click.echo(code)
|
|
|
|
codes += code + "\n"
|
|
db.session.commit()
|
|
|
|
filename = 'storage/invitation-codes-{}.txt'.format(batch)
|
|
|
|
with open(filename, 'w') as f:
|
|
f.write(codes)
|
|
|
|
click.echo(click.style(
|
|
'Congratulations! Generated {} invitation codes for batch {} and saved to the file \'{}\''.format(count, batch,
|
|
filename),
|
|
fg='green'))
|
|
|
|
|
|
def generate_invitation_code():
|
|
code = generate_upper_string()
|
|
while db.session.query(InvitationCode).filter(InvitationCode.code == code).count() > 0:
|
|
code = generate_upper_string()
|
|
|
|
return code
|
|
|
|
|
|
def generate_upper_string():
|
|
letters_digits = string.ascii_uppercase + string.digits
|
|
result = ""
|
|
for i in range(8):
|
|
result += random.choice(letters_digits)
|
|
|
|
return result
|
|
|
|
|
|
@click.command('recreate-all-dataset-indexes', help='Recreate all dataset indexes.')
|
|
def recreate_all_dataset_indexes():
|
|
click.echo(click.style('Start recreate all dataset indexes.', fg='green'))
|
|
recreate_count = 0
|
|
|
|
page = 1
|
|
while True:
|
|
try:
|
|
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
|
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
|
except NotFound:
|
|
break
|
|
|
|
page += 1
|
|
for dataset in datasets:
|
|
try:
|
|
click.echo('Recreating dataset index: {}'.format(dataset.id))
|
|
index = IndexBuilder.get_index(dataset, 'high_quality')
|
|
if index and index._is_origin():
|
|
index.recreate_dataset(dataset)
|
|
recreate_count += 1
|
|
else:
|
|
click.echo('passed.')
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('Recreate dataset index error: {} {}'.format(e.__class__.__name__, str(e)), fg='red'))
|
|
continue
|
|
|
|
click.echo(click.style('Congratulations! Recreate {} dataset indexes.'.format(recreate_count), fg='green'))
|
|
|
|
|
|
@click.command('clean-unused-dataset-indexes', help='Clean unused dataset indexes.')
|
|
def clean_unused_dataset_indexes():
|
|
click.echo(click.style('Start clean unused dataset indexes.', fg='green'))
|
|
clean_days = int(current_app.config.get('CLEAN_DAY_SETTING'))
|
|
start_at = time.perf_counter()
|
|
thirty_days_ago = datetime.datetime.now() - datetime.timedelta(days=clean_days)
|
|
page = 1
|
|
while True:
|
|
try:
|
|
datasets = db.session.query(Dataset).filter(Dataset.created_at < thirty_days_ago) \
|
|
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
|
except NotFound:
|
|
break
|
|
page += 1
|
|
for dataset in datasets:
|
|
dataset_query = db.session.query(DatasetQuery).filter(
|
|
DatasetQuery.created_at > thirty_days_ago,
|
|
DatasetQuery.dataset_id == dataset.id
|
|
).all()
|
|
if not dataset_query or len(dataset_query) == 0:
|
|
documents = db.session.query(Document).filter(
|
|
Document.dataset_id == dataset.id,
|
|
Document.indexing_status == 'completed',
|
|
Document.enabled == True,
|
|
Document.archived == False,
|
|
Document.updated_at > thirty_days_ago
|
|
).all()
|
|
if not documents or len(documents) == 0:
|
|
try:
|
|
# remove index
|
|
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
|
|
kw_index = IndexBuilder.get_index(dataset, 'economy')
|
|
# delete from vector index
|
|
if vector_index:
|
|
if dataset.collection_binding_id:
|
|
vector_index.delete_by_group_id(dataset.id)
|
|
else:
|
|
if dataset.collection_binding_id:
|
|
vector_index.delete_by_group_id(dataset.id)
|
|
else:
|
|
vector_index.delete()
|
|
kw_index.delete()
|
|
# update document
|
|
update_params = {
|
|
Document.enabled: False
|
|
}
|
|
|
|
Document.query.filter_by(dataset_id=dataset.id).update(update_params)
|
|
db.session.commit()
|
|
click.echo(click.style('Cleaned unused dataset {} from db success!'.format(dataset.id),
|
|
fg='green'))
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('clean dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
end_at = time.perf_counter()
|
|
click.echo(click.style('Cleaned unused dataset from db success latency: {}'.format(end_at - start_at), fg='green'))
|
|
|
|
|
|
@click.command('sync-anthropic-hosted-providers', help='Sync anthropic hosted providers.')
|
|
def sync_anthropic_hosted_providers():
|
|
if not hosted_model_providers.anthropic:
|
|
click.echo(click.style('Anthropic hosted provider is not configured.', fg='red'))
|
|
return
|
|
|
|
click.echo(click.style('Start sync anthropic hosted providers.', fg='green'))
|
|
count = 0
|
|
|
|
new_quota_limit = hosted_model_providers.anthropic.quota_limit
|
|
|
|
page = 1
|
|
while True:
|
|
try:
|
|
providers = db.session.query(Provider).filter(
|
|
Provider.provider_name == 'anthropic',
|
|
Provider.provider_type == ProviderType.SYSTEM.value,
|
|
Provider.quota_type == ProviderQuotaType.TRIAL.value,
|
|
Provider.quota_limit != new_quota_limit
|
|
).order_by(Provider.created_at.desc()).paginate(page=page, per_page=100)
|
|
except NotFound:
|
|
break
|
|
|
|
page += 1
|
|
for provider in providers:
|
|
try:
|
|
click.echo('Syncing tenant anthropic hosted provider: {}, origin: limit {}, used {}'
|
|
.format(provider.tenant_id, provider.quota_limit, provider.quota_used))
|
|
original_quota_limit = provider.quota_limit
|
|
division = math.ceil(new_quota_limit / 1000)
|
|
|
|
provider.quota_limit = new_quota_limit if original_quota_limit == 1000 \
|
|
else original_quota_limit * division
|
|
provider.quota_used = division * provider.quota_used
|
|
db.session.commit()
|
|
|
|
count += 1
|
|
except Exception as e:
|
|
click.echo(click.style(
|
|
'Sync tenant anthropic hosted provider error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
continue
|
|
|
|
click.echo(click.style('Congratulations! Synced {} anthropic hosted providers.'.format(count), fg='green'))
|
|
|
|
|
|
@click.command('create-qdrant-indexes', help='Create qdrant indexes.')
|
|
def create_qdrant_indexes():
|
|
click.echo(click.style('Start create qdrant indexes.', fg='green'))
|
|
create_count = 0
|
|
|
|
page = 1
|
|
while True:
|
|
try:
|
|
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
|
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
|
except NotFound:
|
|
break
|
|
|
|
page += 1
|
|
for dataset in datasets:
|
|
if dataset.index_struct_dict:
|
|
if dataset.index_struct_dict['type'] != 'qdrant':
|
|
try:
|
|
click.echo('Create dataset qdrant index: {}'.format(dataset.id))
|
|
try:
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
tenant_id=dataset.tenant_id,
|
|
model_provider_name=dataset.embedding_model_provider,
|
|
model_name=dataset.embedding_model
|
|
)
|
|
except Exception:
|
|
try:
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
tenant_id=dataset.tenant_id
|
|
)
|
|
dataset.embedding_model = embedding_model.name
|
|
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
|
|
except Exception:
|
|
provider = Provider(
|
|
id='provider_id',
|
|
tenant_id=dataset.tenant_id,
|
|
provider_name='openai',
|
|
provider_type=ProviderType.SYSTEM.value,
|
|
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
|
is_valid=True,
|
|
)
|
|
model_provider = OpenAIProvider(provider=provider)
|
|
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
|
model_provider=model_provider)
|
|
embeddings = CacheEmbedding(embedding_model)
|
|
|
|
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
|
|
|
index = QdrantVectorIndex(
|
|
dataset=dataset,
|
|
config=QdrantConfig(
|
|
endpoint=current_app.config.get('QDRANT_URL'),
|
|
api_key=current_app.config.get('QDRANT_API_KEY'),
|
|
root_path=current_app.root_path
|
|
),
|
|
embeddings=embeddings
|
|
)
|
|
if index:
|
|
index.create_qdrant_dataset(dataset)
|
|
index_struct = {
|
|
"type": 'qdrant',
|
|
"vector_store": {
|
|
"class_prefix": dataset.index_struct_dict['vector_store']['class_prefix']}
|
|
}
|
|
dataset.index_struct = json.dumps(index_struct)
|
|
db.session.commit()
|
|
create_count += 1
|
|
else:
|
|
click.echo('passed.')
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
continue
|
|
|
|
click.echo(click.style('Congratulations! Create {} dataset indexes.'.format(create_count), fg='green'))
|
|
|
|
|
|
@click.command('update-qdrant-indexes', help='Update qdrant indexes.')
|
|
def update_qdrant_indexes():
|
|
click.echo(click.style('Start Update qdrant indexes.', fg='green'))
|
|
create_count = 0
|
|
|
|
page = 1
|
|
while True:
|
|
try:
|
|
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
|
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=50)
|
|
except NotFound:
|
|
break
|
|
|
|
page += 1
|
|
for dataset in datasets:
|
|
if dataset.index_struct_dict:
|
|
if dataset.index_struct_dict['type'] != 'qdrant':
|
|
try:
|
|
click.echo('Update dataset qdrant index: {}'.format(dataset.id))
|
|
try:
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
tenant_id=dataset.tenant_id,
|
|
model_provider_name=dataset.embedding_model_provider,
|
|
model_name=dataset.embedding_model
|
|
)
|
|
except Exception:
|
|
provider = Provider(
|
|
id='provider_id',
|
|
tenant_id=dataset.tenant_id,
|
|
provider_name='openai',
|
|
provider_type=ProviderType.CUSTOM.value,
|
|
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
|
is_valid=True,
|
|
)
|
|
model_provider = OpenAIProvider(provider=provider)
|
|
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
|
model_provider=model_provider)
|
|
embeddings = CacheEmbedding(embedding_model)
|
|
|
|
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
|
|
|
index = QdrantVectorIndex(
|
|
dataset=dataset,
|
|
config=QdrantConfig(
|
|
endpoint=current_app.config.get('QDRANT_URL'),
|
|
api_key=current_app.config.get('QDRANT_API_KEY'),
|
|
root_path=current_app.root_path
|
|
),
|
|
embeddings=embeddings
|
|
)
|
|
if index:
|
|
index.update_qdrant_dataset(dataset)
|
|
create_count += 1
|
|
else:
|
|
click.echo('passed.')
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
continue
|
|
|
|
click.echo(click.style('Congratulations! Update {} dataset indexes.'.format(create_count), fg='green'))
|
|
|
|
|
|
@click.command('normalization-collections', help='restore all collections in one')
|
|
def normalization_collections():
|
|
click.echo(click.style('Start normalization collections.', fg='green'))
|
|
normalization_count = []
|
|
page = 1
|
|
while True:
|
|
try:
|
|
datasets = db.session.query(Dataset).filter(Dataset.indexing_technique == 'high_quality') \
|
|
.order_by(Dataset.created_at.desc()).paginate(page=page, per_page=100)
|
|
except NotFound:
|
|
break
|
|
datasets_result = datasets.items
|
|
page += 1
|
|
for i in range(0, len(datasets_result), 5):
|
|
threads = []
|
|
sub_datasets = datasets_result[i:i + 5]
|
|
for dataset in sub_datasets:
|
|
document_format_thread = threading.Thread(target=deal_dataset_vector, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'dataset': dataset,
|
|
'normalization_count': normalization_count
|
|
})
|
|
threads.append(document_format_thread)
|
|
document_format_thread.start()
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
click.echo(click.style('Congratulations! restore {} dataset indexes.'.format(len(normalization_count)), fg='green'))
|
|
|
|
|
|
@click.command('add-qdrant-full-text-index', help='add qdrant full text index')
|
|
def add_qdrant_full_text_index():
|
|
click.echo(click.style('Start add full text index.', fg='green'))
|
|
binds = db.session.query(DatasetCollectionBinding).all()
|
|
if binds and current_app.config['VECTOR_STORE'] == 'qdrant':
|
|
qdrant_url = current_app.config['QDRANT_URL']
|
|
qdrant_api_key = current_app.config['QDRANT_API_KEY']
|
|
client = qdrant_client.QdrantClient(
|
|
qdrant_url,
|
|
api_key=qdrant_api_key, # For Qdrant Cloud, None for local instance
|
|
)
|
|
for bind in binds:
|
|
try:
|
|
text_index_params = TextIndexParams(
|
|
type=TextIndexType.TEXT,
|
|
tokenizer=TokenizerType.MULTILINGUAL,
|
|
min_token_len=2,
|
|
max_token_len=20,
|
|
lowercase=True
|
|
)
|
|
client.create_payload_index(bind.collection_name, 'page_content',
|
|
field_schema=text_index_params)
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('Create full text index error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
click.echo(
|
|
click.style(
|
|
'Congratulations! add collection {} full text index successful.'.format(bind.collection_name),
|
|
fg='green'))
|
|
|
|
|
|
def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count: list):
|
|
with flask_app.app_context():
|
|
try:
|
|
click.echo('restore dataset index: {}'.format(dataset.id))
|
|
try:
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
tenant_id=dataset.tenant_id,
|
|
model_provider_name=dataset.embedding_model_provider,
|
|
model_name=dataset.embedding_model
|
|
)
|
|
except Exception:
|
|
provider = Provider(
|
|
id='provider_id',
|
|
tenant_id=dataset.tenant_id,
|
|
provider_name='openai',
|
|
provider_type=ProviderType.CUSTOM.value,
|
|
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
|
is_valid=True,
|
|
)
|
|
model_provider = OpenAIProvider(provider=provider)
|
|
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002",
|
|
model_provider=model_provider)
|
|
embeddings = CacheEmbedding(embedding_model)
|
|
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
|
|
filter(DatasetCollectionBinding.provider_name == embedding_model.model_provider.provider_name,
|
|
DatasetCollectionBinding.model_name == embedding_model.name). \
|
|
order_by(DatasetCollectionBinding.created_at). \
|
|
first()
|
|
|
|
if not dataset_collection_binding:
|
|
dataset_collection_binding = DatasetCollectionBinding(
|
|
provider_name=embedding_model.model_provider.provider_name,
|
|
model_name=embedding_model.name,
|
|
collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'
|
|
)
|
|
db.session.add(dataset_collection_binding)
|
|
db.session.commit()
|
|
|
|
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
|
|
|
index = QdrantVectorIndex(
|
|
dataset=dataset,
|
|
config=QdrantConfig(
|
|
endpoint=current_app.config.get('QDRANT_URL'),
|
|
api_key=current_app.config.get('QDRANT_API_KEY'),
|
|
root_path=current_app.root_path
|
|
),
|
|
embeddings=embeddings
|
|
)
|
|
if index:
|
|
# index.delete_by_group_id(dataset.id)
|
|
index.restore_dataset_in_one(dataset, dataset_collection_binding)
|
|
else:
|
|
click.echo('passed.')
|
|
normalization_count.append(1)
|
|
except Exception as e:
|
|
click.echo(
|
|
click.style('Create dataset index error: {} {}'.format(e.__class__.__name__, str(e)),
|
|
fg='red'))
|
|
|
|
|
|
@click.command('update_app_model_configs', help='Migrate data to support paragraph variable.')
|
|
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
|
def update_app_model_configs(batch_size):
|
|
pre_prompt_template = '{{default_input}}'
|
|
user_input_form_template = {
|
|
"en-US": [
|
|
{
|
|
"paragraph": {
|
|
"label": "Query",
|
|
"variable": "default_input",
|
|
"required": False,
|
|
"default": ""
|
|
}
|
|
}
|
|
],
|
|
"zh-Hans": [
|
|
{
|
|
"paragraph": {
|
|
"label": "查询内容",
|
|
"variable": "default_input",
|
|
"required": False,
|
|
"default": ""
|
|
}
|
|
}
|
|
]
|
|
}
|
|
|
|
click.secho("Start migrate old data that the text generator can support paragraph variable.", fg='green')
|
|
|
|
total_records = db.session.query(AppModelConfig) \
|
|
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
|
.filter(App.mode == 'completion') \
|
|
.count()
|
|
|
|
if total_records == 0:
|
|
click.secho("No data to migrate.", fg='green')
|
|
return
|
|
|
|
num_batches = (total_records + batch_size - 1) // batch_size
|
|
|
|
with tqdm(total=total_records, desc="Migrating Data") as pbar:
|
|
for i in range(num_batches):
|
|
offset = i * batch_size
|
|
limit = min(batch_size, total_records - offset)
|
|
|
|
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
|
|
|
|
data_batch = db.session.query(AppModelConfig) \
|
|
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
|
.filter(App.mode == 'completion') \
|
|
.order_by(App.created_at) \
|
|
.offset(offset).limit(limit).all()
|
|
|
|
if not data_batch:
|
|
click.secho("No more data to migrate.", fg='green')
|
|
break
|
|
|
|
try:
|
|
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
|
|
for data in data_batch:
|
|
# click.secho(f"Migrating data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
|
|
|
if data.pre_prompt is None:
|
|
data.pre_prompt = pre_prompt_template
|
|
else:
|
|
if pre_prompt_template in data.pre_prompt:
|
|
continue
|
|
data.pre_prompt += pre_prompt_template
|
|
|
|
app_data = db.session.query(App) \
|
|
.filter(App.id == data.app_id) \
|
|
.one()
|
|
|
|
account_data = db.session.query(Account) \
|
|
.join(TenantAccountJoin, Account.id == TenantAccountJoin.account_id) \
|
|
.filter(TenantAccountJoin.role == 'owner') \
|
|
.filter(TenantAccountJoin.tenant_id == app_data.tenant_id) \
|
|
.one_or_none()
|
|
|
|
if not account_data:
|
|
continue
|
|
|
|
if data.user_input_form is None or data.user_input_form == 'null':
|
|
data.user_input_form = json.dumps(user_input_form_template[account_data.interface_language])
|
|
else:
|
|
raw_json_data = json.loads(data.user_input_form)
|
|
raw_json_data.append(user_input_form_template[account_data.interface_language][0])
|
|
data.user_input_form = json.dumps(raw_json_data)
|
|
|
|
# click.secho(f"Updated data {data.id}, pre_prompt: {data.pre_prompt}, user_input_form: {data.user_input_form}", fg='green')
|
|
|
|
db.session.commit()
|
|
|
|
except Exception as e:
|
|
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
|
|
fg='red')
|
|
continue
|
|
|
|
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
|
|
|
|
pbar.update(len(data_batch))
|
|
|
|
|
|
@click.command('migrate_default_input_to_dataset_query_variable')
|
|
@click.option("--batch-size", default=500, help="Number of records to migrate in each batch.")
|
|
def migrate_default_input_to_dataset_query_variable(batch_size):
|
|
click.secho("Starting...", fg='green')
|
|
|
|
total_records = db.session.query(AppModelConfig) \
|
|
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
|
.filter(App.mode == 'completion') \
|
|
.filter(AppModelConfig.dataset_query_variable == None) \
|
|
.count()
|
|
|
|
if total_records == 0:
|
|
click.secho("No data to migrate.", fg='green')
|
|
return
|
|
|
|
num_batches = (total_records + batch_size - 1) // batch_size
|
|
|
|
with tqdm(total=total_records, desc="Migrating Data") as pbar:
|
|
for i in range(num_batches):
|
|
offset = i * batch_size
|
|
limit = min(batch_size, total_records - offset)
|
|
|
|
click.secho(f"Fetching batch {i + 1}/{num_batches} from source database...", fg='green')
|
|
|
|
data_batch = db.session.query(AppModelConfig) \
|
|
.join(App, App.app_model_config_id == AppModelConfig.id) \
|
|
.filter(App.mode == 'completion') \
|
|
.filter(AppModelConfig.dataset_query_variable == None) \
|
|
.order_by(App.created_at) \
|
|
.offset(offset).limit(limit).all()
|
|
|
|
if not data_batch:
|
|
click.secho("No more data to migrate.", fg='green')
|
|
break
|
|
|
|
try:
|
|
click.secho(f"Migrating {len(data_batch)} records...", fg='green')
|
|
for data in data_batch:
|
|
config = AppModelConfig.to_dict(data)
|
|
|
|
tools = config["agent_mode"]["tools"]
|
|
dataset_exists = "dataset" in str(tools)
|
|
if not dataset_exists:
|
|
continue
|
|
|
|
user_input_form = config.get("user_input_form", [])
|
|
for form in user_input_form:
|
|
paragraph = form.get('paragraph')
|
|
if paragraph \
|
|
and paragraph.get('variable') == 'query':
|
|
data.dataset_query_variable = 'query'
|
|
break
|
|
|
|
if paragraph \
|
|
and paragraph.get('variable') == 'default_input':
|
|
data.dataset_query_variable = 'default_input'
|
|
break
|
|
|
|
db.session.commit()
|
|
|
|
except Exception as e:
|
|
click.secho(f"Error while migrating data: {e}, app_id: {data.app_id}, app_model_config_id: {data.id}",
|
|
fg='red')
|
|
continue
|
|
|
|
click.secho(f"Successfully migrated batch {i + 1}/{num_batches}.", fg='green')
|
|
|
|
pbar.update(len(data_batch))
|
|
|
|
|
|
def register_commands(app):
|
|
app.cli.add_command(reset_password)
|
|
app.cli.add_command(reset_email)
|
|
app.cli.add_command(generate_invitation_codes)
|
|
app.cli.add_command(reset_encrypt_key_pair)
|
|
app.cli.add_command(recreate_all_dataset_indexes)
|
|
app.cli.add_command(sync_anthropic_hosted_providers)
|
|
app.cli.add_command(clean_unused_dataset_indexes)
|
|
app.cli.add_command(create_qdrant_indexes)
|
|
app.cli.add_command(update_qdrant_indexes)
|
|
app.cli.add_command(update_app_model_configs)
|
|
app.cli.add_command(normalization_collections)
|
|
app.cli.add_command(migrate_default_input_to_dataset_query_variable)
|
|
app.cli.add_command(add_qdrant_full_text_index)
|