dify/api/services/dataset_service.py
KVOJJJin cf93d8d6e2
Feat: Q&A format segmentation support (#668)
Co-authored-by: jyong <718720800@qq.com>
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>
2023-07-28 20:47:15 +08:00

939 lines
40 KiB
Python

import json
import logging
import datetime
import time
import random
import uuid
from typing import Optional, List
from flask import current_app
from sqlalchemy import func
from core.llm.token_calculator import TokenCalculator
from extensions.ext_redis import redis_client
from flask_login import current_user
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from libs import helper
from models.account import Account
from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
from models.model import UploadFile
from models.source import DataSourceBinding
from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from tasks.clean_notion_document_task import clean_notion_document_task
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.create_segment_to_index_task import create_segment_to_index_task
from tasks.update_segment_index_task import update_segment_index_task
from tasks.update_segment_keyword_index_task\
import update_segment_keyword_index_task
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
if user:
permission_filter = db.or_(Dataset.created_by == user.id,
Dataset.permission == 'all_team_members')
else:
permission_filter = Dataset.permission == 'all_team_members'
datasets = Dataset.query.filter(
db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
.order_by(Dataset.created_at.desc()) \
.paginate(
page=page,
per_page=per_page,
max_per_page=100,
error_out=False
)
return datasets.items, datasets.total
@staticmethod
def get_process_rules(dataset_id):
# get the latest process rule
dataset_process_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.dataset_id == dataset_id). \
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
return {
'mode': mode,
'rules': rules
}
@staticmethod
def get_datasets_by_ids(ids, tenant_id):
datasets = Dataset.query.filter(Dataset.id.in_(ids),
Dataset.tenant_id == tenant_id).paginate(
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
return datasets.items, datasets.total
@staticmethod
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(
f'Dataset with name {name} already exists.')
dataset = Dataset(name=name, indexing_technique=indexing_technique)
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
db.session.add(dataset)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if dataset is None:
return None
else:
return dataset
@staticmethod
def update_dataset(dataset_id, data, user):
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
if dataset.indexing_technique != data['indexing_technique']:
# if update indexing_technique
if data['indexing_technique'] == 'economy':
deal_dataset_vector_index_task.delay(dataset_id, 'remove')
elif data['indexing_technique'] == 'high_quality':
deal_dataset_vector_index_task.delay(dataset_id, 'add')
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
filtered_data['updated_by'] = user.id
filtered_data['updated_at'] = datetime.datetime.now()
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
return dataset
@staticmethod
def delete_dataset(dataset_id, user):
# todo: cannot delete dataset if it is being processed
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
return False
DatasetService.check_dataset_permission(dataset, user)
dataset_was_deleted.send(dataset)
db.session.delete(dataset)
db.session.commit()
return True
@staticmethod
def check_dataset_permission(dataset, user):
if dataset.tenant_id != user.current_tenant_id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
if dataset.permission == 'only_me' and dataset.created_by != user.id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
@staticmethod
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
.order_by(db.desc(DatasetQuery.created_at)) \
.paginate(
page=page, per_page=per_page, max_per_page=100, error_out=False
)
return dataset_queries.items, dataset_queries.total
@staticmethod
def get_related_apps(dataset_id: str):
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
.order_by(db.desc(AppDatasetJoin.created_at)).all()
class DocumentService:
DEFAULT_RULES = {
'mode': 'custom',
'rules': {
'pre_processing_rules': [
{'id': 'remove_extra_spaces', 'enabled': True},
{'id': 'remove_urls_emails', 'enabled': False}
],
'segmentation': {
'delimiter': '\n',
'max_tokens': 500
}
}
}
DOCUMENT_METADATA_SCHEMA = {
"book": {
"title": str,
"language": str,
"author": str,
"publisher": str,
"publication_date": str,
"isbn": str,
"category": str,
},
"web_page": {
"title": str,
"url": str,
"language": str,
"publish_date": str,
"author/publisher": str,
"topic/keywords": str,
"description": str,
},
"paper": {
"title": str,
"language": str,
"author": str,
"publish_date": str,
"journal/conference_name": str,
"volume/issue/page_numbers": str,
"doi": str,
"topic/keywords": str,
"abstract": str,
},
"social_media_post": {
"platform": str,
"author/username": str,
"publish_date": str,
"post_url": str,
"topic/tags": str,
},
"wikipedia_entry": {
"title": str,
"language": str,
"web_page_url": str,
"last_edit_date": str,
"editor/contributor": str,
"summary/introduction": str,
},
"personal_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"tags/category": str,
},
"business_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"department/team": str,
},
"im_chat_log": {
"chat_platform": str,
"chat_participants/group_name": str,
"start_date": str,
"end_date": str,
"summary": str,
},
"synced_from_notion": {
"title": str,
"language": str,
"author/creator": str,
"creation_date": str,
"last_modified_date": str,
"notion_page_link": str,
"category/tags": str,
"description": str,
},
"synced_from_github": {
"repository_name": str,
"repository_description": str,
"repository_owner/organization": str,
"code_filename": str,
"code_file_path": str,
"programming_language": str,
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str
}
}
@staticmethod
def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
return document
@staticmethod
def get_document_by_id(document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
return document
@staticmethod
def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.enabled == True
).all()
return documents
@staticmethod
def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
documents = db.session.query(Document).filter(
Document.batch == batch,
Document.dataset_id == dataset_id,
Document.tenant_id == current_user.current_tenant_id
).all()
return documents
@staticmethod
def get_document_file_detail(file_id: str):
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == file_id). \
one_or_none()
return file_detail
@staticmethod
def check_archived(document):
if document.archived:
return True
else:
return False
@staticmethod
def delete_document(document):
if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
raise DocumentIndexingError()
# trigger document_was_deleted signal
document_was_deleted.send(document.id, dataset_id=document.dataset_id)
db.session.delete(document)
db.session.commit()
@staticmethod
def pause_document(document):
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
raise DocumentIndexingError()
# update document to be paused
document.is_paused = True
document.paused_by = current_user.id
document.paused_at = datetime.datetime.utcnow()
db.session.add(document)
db.session.commit()
# set document paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.setnx(indexing_cache_key, "True")
@staticmethod
def recover_document(document):
if not document.is_paused:
raise DocumentIndexingError()
# update document to be recover
document.is_paused = False
document.paused_by = current_user.id
document.paused_at = time.time()
db.session.add(document)
db.session.commit()
# delete paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.delete(indexing_cache_key)
# trigger async task
document_indexing_task.delay(document.dataset_id, document.id)
@staticmethod
def get_documents_position(dataset_id):
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
if document:
return document.position + 1
else:
return 1
@staticmethod
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
db.session.commit()
if not dataset.indexing_technique:
if 'indexing_technique' not in document_data \
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is required")
dataset.indexing_technique = document_data["indexing_technique"]
documents = []
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
if 'original_document_id' in document_data and document_data["original_document_id"]:
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
documents.append(document)
else:
# save process rule
if not dataset_process_rule:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
document = DocumentService.save_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
data_source_info, created_from, position,
account, file_name, batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
exist_page_ids = []
exist_document = dict()
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='notion_import',
enabled=True
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info['notion_page_id'])
exist_document[data_source_info['notion_page_id']] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
if page['page_id'] not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document = DocumentService.save_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
data_source_info, created_from, position,
account, page['page_name'], batch)
# if page['type'] == 'database':
# document.splitting_completed_at = datetime.datetime.utcnow()
# document.cleaning_completed_at = datetime.datetime.utcnow()
# document.parsing_completed_at = datetime.datetime.utcnow()
# document.completed_at = datetime.datetime.utcnow()
# document.indexing_status = 'completed'
# document.word_count = 0
# document.tokens = 0
# document.indexing_latency = 0
db.session.add(document)
db.session.flush()
# if page['type'] != 'database':
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page['page_id'])
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
db.session.commit()
# trigger async task
document_indexing_task.delay(dataset.id, document_ids)
return documents, batch
@staticmethod
def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
data_source_info: dict, created_from: str, position: int, account: Account, name: str,
batch: str):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
position=position,
data_source_type=data_source_type,
data_source_info=json.dumps(data_source_info),
dataset_process_rule_id=process_rule_id,
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form
)
return document
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id).count()
return documents_count
@staticmethod
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
if document.display_status != 'available':
raise ValueError("Document is not available")
# save process rule
if 'process_rule' in document_data and document_data['process_rule']:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
document.dataset_process_rule_id = dataset_process_rule.id
# update document data source
if 'data_source' in document_data and document_data['data_source']:
file_name = ''
data_source_info = {}
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document.data_source_type = document_data["data_source"]["type"]
document.data_source_info = json.dumps(data_source_info)
document.name = file_name
# update document to be waiting
document.indexing_status = 'waiting'
document.completed_at = None
document.processing_started_at = None
document.parsing_completed_at = None
document.cleaning_completed_at = None
document.splitting_completed_at = None
document.updated_at = datetime.datetime.utcnow()
document.created_from = created_from
document.doc_form = document_data['doc_form']
db.session.add(document)
db.session.commit()
# update document segment
update_params = {
DocumentSegment.status: 're_segment'
}
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
db.session.commit()
# trigger async task
document_indexing_update_task.delay(document.dataset_id, document.id)
return document
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
# check document limit
if current_app.config['EDITION'] == 'CLOUD':
documents_count = DocumentService.get_tenant_documents_count()
tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
if documents_count > tenant_document_count:
raise ValueError(f"over document limit {tenant_document_count}.")
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
name='',
data_source_type=document_data["data_source"]["type"],
indexing_technique=document_data["indexing_technique"],
created_by=account.id
)
db.session.add(dataset)
db.session.flush()
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
cut_length = 18
cut_name = documents[0].name[:cut_length]
dataset.name = cut_name + '...'
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
db.session.commit()
return dataset, documents, batch
@classmethod
def document_create_args_validate(cls, args: dict):
if 'original_document_id' not in args or not args['original_document_id']:
DocumentService.data_source_args_validate(args)
DocumentService.process_rule_args_validate(args)
else:
if ('data_source' not in args and not args['data_source']) \
and ('process_rule' not in args and not args['process_rule']):
raise ValueError("Data source or Process rule is required")
else:
if 'data_source' in args and args['data_source']:
DocumentService.data_source_args_validate(args)
if 'process_rule' in args and args['process_rule']:
DocumentService.process_rule_args_validate(args)
@classmethod
def data_source_args_validate(cls, args: dict):
if 'data_source' not in args or not args['data_source']:
raise ValueError("Data source is required")
if not isinstance(args['data_source'], dict):
raise ValueError("Data source is invalid")
if 'type' not in args['data_source'] or not args['data_source']['type']:
raise ValueError("Data source type is required")
if args['data_source']['type'] not in Document.DATA_SOURCES:
raise ValueError("Data source type is invalid")
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
raise ValueError("Data source info is required")
if args['data_source']['type'] == 'upload_file':
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'file_info_list']:
raise ValueError("File source info is required")
if args['data_source']['type'] == 'notion_import':
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'notion_info_list']:
raise ValueError("Notion source info is required")
@classmethod
def process_rule_args_validate(cls, args: dict):
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
@classmethod
def estimate_args_validate(cls, args: dict):
if 'info_list' not in args or not args['info_list']:
raise ValueError("Data source info is required")
if not isinstance(args['info_list'], dict):
raise ValueError("Data info is invalid")
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
class SegmentService:
@classmethod
def segment_create_args_validate(cls, args: dict, document: Document):
if document.doc_form == 'qa_model':
if 'answer' not in args or not args['answer']:
raise ValueError("Answer is required")
@classmethod
def create_segment(cls, args: dict, document: Document):
content = args['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = args['answer']
db.session.add(segment_document)
db.session.commit()
indexing_cache_key = 'segment_{}_indexing'.format(segment_document.id)
redis_client.setex(indexing_cache_key, 600, 1)
create_segment_to_index_task.delay(segment_document.id, args['keywords'])
return segment_document
@classmethod
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document):
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is indexing, please try again later")
content = args['content']
if segment.content == content:
if document.doc_form == 'qa_model':
segment.answer = args['answer']
if args['keywords']:
segment.keywords = args['keywords']
db.session.add(segment)
db.session.commit()
# update segment index task
redis_client.setex(indexing_cache_key, 600, 1)
update_segment_keyword_index_task.delay(segment.id)
else:
segment_hash = helper.generate_text_hash(content)
# calc embedding use tokens
tokens = TokenCalculator.get_num_tokens('text-embedding-ada-002', content)
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
segment.tokens = tokens
segment.status = 'updating'
segment.updated_by = current_user.id
segment.updated_at = datetime.datetime.utcnow()
if document.doc_form == 'qa_model':
segment.answer = args['answer']
db.session.add(segment)
db.session.commit()
# update segment index task
redis_client.setex(indexing_cache_key, 600, 1)
update_segment_index_task.delay(segment.id, args['keywords'])
return segment