dify/api/controllers/console/datasets/datasets_document.py

1026 lines
41 KiB
Python

import logging
from argparse import ArgumentTypeError
from datetime import datetime, timezone
from flask import request
from flask_login import current_user
from flask_restful import Resource, fields, marshal, marshal_with, reqparse
from sqlalchemy import asc, desc
from transformers.hf_argparser import string_to_bool
from werkzeug.exceptions import Forbidden, NotFound
import services
from controllers.console import api
from controllers.console.app.error import (
ProviderModelCurrentlyNotSupportError,
ProviderNotInitializeError,
ProviderQuotaExceededError,
)
from controllers.console.datasets.error import (
ArchivedDocumentImmutableError,
DocumentAlreadyFinishedError,
DocumentIndexingError,
IndexingEstimateError,
InvalidActionError,
InvalidMetadataError,
)
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check
from core.errors.error import (
LLMBadRequestError,
ModelCurrentlyNotSupportError,
ProviderTokenNotInitError,
QuotaExceededError,
)
from core.indexing_runner import IndexingRunner
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.errors.invoke import InvokeAuthorizationError
from core.rag.extractor.entity.extract_setting import ExtractSetting
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from fields.document_fields import (
dataset_and_document_fields,
document_fields,
document_status_fields,
document_with_segments_fields,
)
from libs.login import login_required
from models.dataset import Dataset, DatasetProcessRule, Document, DocumentSegment
from models.model import UploadFile
from services.dataset_service import DatasetService, DocumentService
from tasks.add_document_to_index_task import add_document_to_index_task
from tasks.remove_document_from_index_task import remove_document_from_index_task
class DocumentResource(Resource):
def get_document(self, dataset_id: str, document_id: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise NotFound("Document not found.")
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden("No permission.")
return document
def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
documents = DocumentService.get_batch_documents(dataset_id, batch)
if not documents:
raise NotFound("Documents not found.")
return documents
class GetProcessRuleApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
req_data = request.args
document_id = req_data.get("document_id")
# get default rules
mode = DocumentService.DEFAULT_RULES["mode"]
rules = DocumentService.DEFAULT_RULES["rules"]
if document_id:
# get the latest process rule
document = Document.query.get_or_404(document_id)
dataset = DatasetService.get_dataset(document.dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
# get the latest process rule
dataset_process_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.dataset_id == document.dataset_id)
.order_by(DatasetProcessRule.created_at.desc())
.limit(1)
.one_or_none()
)
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
return {"mode": mode, "rules": rules}
class DatasetDocumentListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id):
dataset_id = str(dataset_id)
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
search = request.args.get("keyword", default=None, type=str)
sort = request.args.get("sort", default="-created_at", type=str)
# "yes", "true", "t", "y", "1" convert to True, while others convert to False.
try:
fetch = string_to_bool(request.args.get("fetch", default="false"))
except (ArgumentTypeError, ValueError, Exception) as e:
fetch = False
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)
if search:
search = f"%{search}%"
query = query.filter(Document.name.like(search))
if sort.startswith("-"):
sort_logic = desc
sort = sort[1:]
else:
sort_logic = asc
if sort == "hit_count":
sub_query = (
db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count"))
.group_by(DocumentSegment.document_id)
.subquery()
)
query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by(
sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)),
sort_logic(Document.position),
)
elif sort == "created_at":
query = query.order_by(
sort_logic(Document.created_at),
sort_logic(Document.position),
)
else:
query = query.order_by(
desc(Document.created_at),
desc(Document.position),
)
paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
documents = paginated_documents.items
if fetch:
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
data = marshal(documents, document_with_segments_fields)
else:
data = marshal(documents, document_fields)
response = {
"data": data,
"has_more": len(documents) == limit,
"limit": limit,
"total": paginated_documents.total,
"page": page,
}
return response
documents_and_batch_fields = {"documents": fields.List(fields.Nested(document_fields)), "batch": fields.String}
@setup_required
@login_required
@account_initialization_required
@marshal_with(documents_and_batch_fields)
@cloud_edition_billing_resource_check("vector_space")
def post(self, dataset_id):
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument(
"indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"
)
parser.add_argument("data_source", type=dict, required=False, location="json")
parser.add_argument("process_rule", type=dict, required=False, location="json")
parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")
parser.add_argument("original_document_id", type=str, required=False, location="json")
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
args = parser.parse_args()
if not dataset.indexing_technique and not args["indexing_technique"]:
raise ValueError("indexing_technique is required.")
# validate args
DocumentService.document_create_args_validate(args)
try:
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
return {"documents": documents, "batch": batch}
class DatasetInitApi(Resource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(dataset_and_document_fields)
@cloud_edition_billing_resource_check("vector_space")
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument(
"indexing_technique",
type=str,
choices=Dataset.INDEXING_TECHNIQUE_LIST,
required=True,
nullable=False,
location="json",
)
parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json")
parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")
parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")
parser.add_argument(
"doc_language", type=str, default="English", required=False, nullable=False, location="json"
)
parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")
parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")
parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
if args["indexing_technique"] == "high_quality":
if args["embedding_model"] is None or args["embedding_model_provider"] is None:
raise ValueError("embedding model and embedding model provider are required for high quality indexing.")
try:
model_manager = ModelManager()
model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
except InvokeAuthorizationError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
# validate args
DocumentService.document_create_args_validate(args)
try:
dataset, documents, batch = DocumentService.save_document_without_dataset_id(
tenant_id=current_user.current_tenant_id, document_data=args, account=current_user
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
response = {"dataset": dataset, "documents": documents, "batch": batch}
return response
class DocumentIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
if document.indexing_status in {"completed", "error"}:
raise DocumentAlreadyFinishedError()
data_process_rule = document.dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
if document.data_source_type == "upload_file":
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise NotFound("File not found.")
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file, document_model=document.doc_form
)
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
[extract_setting],
data_process_rule_dict,
document.doc_form,
"English",
dataset_id,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingEstimateApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}
if not documents:
return response
data_process_rule = documents[0].dataset_process_rule
data_process_rule_dict = data_process_rule.to_dict()
info_list = []
extract_settings = []
for document in documents:
if document.indexing_status in {"completed", "error"}:
raise DocumentAlreadyFinishedError()
data_source_info = document.data_source_info_dict
# format document files info
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
info_list.append(file_id)
# format document notion info
elif (
data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info
):
pages = []
page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]}
pages.append(page)
notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages}
info_list.append(notion_info)
if document.data_source_type == "upload_file":
file_id = data_source_info["upload_file_id"]
file_detail = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id)
.first()
)
if file_detail is None:
raise NotFound("File not found.")
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form
)
extract_settings.append(extract_setting)
elif document.data_source_type == "notion_import":
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"tenant_id": current_user.current_tenant_id,
},
document_model=document.doc_form,
)
extract_settings.append(extract_setting)
elif document.data_source_type == "website_crawl":
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"url": data_source_info["url"],
"tenant_id": current_user.current_tenant_id,
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
},
document_model=document.doc_form,
)
extract_settings.append(extract_setting)
else:
raise ValueError("Data source type not support")
indexing_runner = IndexingRunner()
try:
response = indexing_runner.indexing_estimate(
current_user.current_tenant_id,
extract_settings,
data_process_rule_dict,
document.doc_form,
"English",
dataset_id,
)
except LLMBadRequestError:
raise ProviderNotInitializeError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except Exception as e:
raise IndexingEstimateError(str(e))
return response
class DocumentBatchIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, batch):
dataset_id = str(dataset_id)
batch = str(batch)
documents = self.get_batch_documents(dataset_id, batch)
documents_status = []
for document in documents:
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document.id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = "paused"
documents_status.append(marshal(document, document_status_fields))
data = {"data": documents_status}
return data
class DocumentIndexingStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
completed_segments = DocumentSegment.query.filter(
DocumentSegment.completed_at.isnot(None),
DocumentSegment.document_id == str(document_id),
DocumentSegment.status != "re_segment",
).count()
total_segments = DocumentSegment.query.filter(
DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment"
).count()
document.completed_segments = completed_segments
document.total_segments = total_segments
if document.is_paused:
document.indexing_status = "paused"
return marshal(document, document_status_fields)
class DocumentDetailApi(DocumentResource):
METADATA_CHOICES = {"all", "only", "without"}
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
metadata = request.args.get("metadata", "all")
if metadata not in self.METADATA_CHOICES:
raise InvalidMetadataError(f"Invalid metadata value: {metadata}")
if metadata == "only":
response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}
elif metadata == "without":
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
"id": document.id,
"position": document.position,
"data_source_type": document.data_source_type,
"data_source_info": data_source_info,
"dataset_process_rule_id": document.dataset_process_rule_id,
"dataset_process_rule": process_rules,
"name": document.name,
"created_from": document.created_from,
"created_by": document.created_by,
"created_at": document.created_at.timestamp(),
"tokens": document.tokens,
"indexing_status": document.indexing_status,
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
"indexing_latency": document.indexing_latency,
"error": document.error,
"enabled": document.enabled,
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
"disabled_by": document.disabled_by,
"archived": document.archived,
"segment_count": document.segment_count,
"average_segment_length": document.average_segment_length,
"hit_count": document.hit_count,
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
}
else:
process_rules = DatasetService.get_process_rules(dataset_id)
data_source_info = document.data_source_detail_dict
response = {
"id": document.id,
"position": document.position,
"data_source_type": document.data_source_type,
"data_source_info": data_source_info,
"dataset_process_rule_id": document.dataset_process_rule_id,
"dataset_process_rule": process_rules,
"name": document.name,
"created_from": document.created_from,
"created_by": document.created_by,
"created_at": document.created_at.timestamp(),
"tokens": document.tokens,
"indexing_status": document.indexing_status,
"completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,
"updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,
"indexing_latency": document.indexing_latency,
"error": document.error,
"enabled": document.enabled,
"disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,
"disabled_by": document.disabled_by,
"archived": document.archived,
"doc_type": document.doc_type,
"doc_metadata": document.doc_metadata,
"segment_count": document.segment_count,
"average_segment_length": document.average_segment_length,
"hit_count": document.hit_count,
"display_status": document.display_status,
"doc_form": document.doc_form,
"doc_language": document.doc_language,
}
return response, 200
class DocumentProcessingApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if action == "pause":
if document.indexing_status != "indexing":
raise InvalidActionError("Document not in indexing state.")
document.paused_by = current_user.id
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.is_paused = True
db.session.commit()
elif action == "resume":
if document.indexing_status not in {"paused", "error"}:
raise InvalidActionError("Document not in paused or error state.")
document.paused_by = None
document.paused_at = None
document.is_paused = False
db.session.commit()
else:
raise InvalidActionError()
return {"result": "success"}, 200
class DocumentDeleteApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def delete(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
document = self.get_document(dataset_id, document_id)
try:
DocumentService.delete_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot delete document during indexing.")
return {"result": "success"}, 204
class DocumentMetadataApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def put(self, dataset_id, document_id):
dataset_id = str(dataset_id)
document_id = str(document_id)
document = self.get_document(dataset_id, document_id)
req_data = request.get_json()
doc_type = req_data.get("doc_type")
doc_metadata = req_data.get("doc_metadata")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
if doc_type is None or doc_metadata is None:
raise ValueError("Both doc_type and doc_metadata must be provided.")
if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:
raise ValueError("Invalid doc_type.")
if not isinstance(doc_metadata, dict):
raise ValueError("doc_metadata must be a dictionary.")
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type]
document.doc_metadata = {}
if doc_type == "others":
document.doc_metadata = doc_metadata
else:
for key, value_type in metadata_schema.items():
value = doc_metadata.get(key)
if value is not None and isinstance(value, value_type):
document.doc_metadata[key] = value
document.doc_type = doc_type
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
return {"result": "success", "message": "Document metadata updated."}, 200
class DocumentStatusApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@cloud_edition_billing_resource_check("vector_space")
def patch(self, dataset_id, document_id, action):
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
raise NotFound("Dataset not found.")
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_dataset_editor:
raise Forbidden()
# check user's model setting
DatasetService.check_dataset_model_setting(dataset)
# check user's permission
DatasetService.check_dataset_permission(dataset, current_user)
document = self.get_document(dataset_id, document_id)
indexing_cache_key = "document_{}_indexing".format(document.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise InvalidActionError("Document is being indexed, please try again later")
if action == "enable":
if document.enabled:
raise InvalidActionError("Document already enabled.")
document.enabled = True
document.disabled_at = None
document.disabled_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "disable":
if not document.completed_at or document.indexing_status != "completed":
raise InvalidActionError("Document is not completed.")
if not document.enabled:
raise InvalidActionError("Document already disabled.")
document.enabled = False
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.disabled_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "archive":
if document.archived:
raise InvalidActionError("Document already archived.")
document.archived = True
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None)
document.archived_by = current_user.id
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
if document.enabled:
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
remove_document_from_index_task.delay(document_id)
return {"result": "success"}, 200
elif action == "un_archive":
if not document.archived:
raise InvalidActionError("Document is not archived.")
document.archived = False
document.archived_at = None
document.archived_by = None
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None)
db.session.commit()
# Set cache to prevent indexing the same document multiple times
redis_client.setex(indexing_cache_key, 600, 1)
add_document_to_index_task.delay(document_id)
return {"result": "success"}, 200
else:
raise InvalidActionError()
class DocumentPauseApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""pause document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.pause_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot pause completed document.")
return {"result": "success"}, 204
class DocumentRecoverApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def patch(self, dataset_id, document_id):
"""recover document."""
dataset_id = str(dataset_id)
document_id = str(document_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
try:
# pause document
DocumentService.recover_document(document)
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Document is not in paused status.")
return {"result": "success"}, 204
class DocumentRetryApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
"""retry document."""
parser = reqparse.RequestParser()
parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json")
args = parser.parse_args()
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
retry_documents = []
if not dataset:
raise NotFound("Dataset not found.")
for document_id in args["document_ids"]:
try:
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
# 404 if document not found
if document is None:
raise NotFound("Document Not Exists.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# 400 if document is completed
if document.indexing_status == "completed":
raise DocumentAlreadyFinishedError()
retry_documents.append(document)
except Exception as e:
logging.error(f"Document {document_id} retry failed: {str(e)}")
continue
# retry document
DocumentService.retry_document(dataset_id, retry_documents)
return {"result": "success"}, 204
class DocumentRenameApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
@marshal_with(document_fields)
def post(self, dataset_id, document_id):
# The role of the current user in the ta table must be admin, owner, editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_operator_permission(current_user, dataset)
parser = reqparse.RequestParser()
parser.add_argument("name", type=str, required=True, nullable=False, location="json")
args = parser.parse_args()
try:
document = DocumentService.rename_document(dataset_id, document_id, args["name"])
except services.errors.document.DocumentIndexingError:
raise DocumentIndexingError("Cannot delete document during indexing.")
return document
class WebsiteDocumentSyncApi(DocumentResource):
@setup_required
@login_required
@account_initialization_required
def get(self, dataset_id, document_id):
"""sync website document."""
dataset_id = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise NotFound("Dataset not found.")
document_id = str(document_id)
document = DocumentService.get_document(dataset.id, document_id)
if not document:
raise NotFound("Document not found.")
if document.tenant_id != current_user.current_tenant_id:
raise Forbidden("No permission.")
if document.data_source_type != "website_crawl":
raise ValueError("Document is not a website document.")
# 403 if document is archived
if DocumentService.check_archived(document):
raise ArchivedDocumentImmutableError()
# sync document
DocumentService.sync_website_document(dataset_id, document)
return {"result": "success"}, 200
api.add_resource(GetProcessRuleApi, "/datasets/process-rule")
api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents")
api.add_resource(DatasetInitApi, "/datasets/init")
api.add_resource(
DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate"
)
api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate")
api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status")
api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status")
api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(
DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>"
)
api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")
api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")
api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>")
api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")
api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")
api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")
api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename")
api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync")