mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
207 lines
7.7 KiB
Python
207 lines
7.7 KiB
Python
import logging
|
|
import threading
|
|
import time
|
|
|
|
import numpy as np
|
|
from flask import current_app
|
|
from langchain.embeddings.base import Embeddings
|
|
from langchain.schema import Document
|
|
from sklearn.manifold import TSNE
|
|
|
|
from core.embedding.cached_embedding import CacheEmbedding
|
|
from core.model_manager import ModelManager
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
from core.rerank.rerank import RerankRunner
|
|
from extensions.ext_database import db
|
|
from models.account import Account
|
|
from models.dataset import Dataset, DatasetQuery, DocumentSegment
|
|
from services.retrieval_service import RetrievalService
|
|
|
|
default_retrieval_model = {
|
|
'search_method': 'semantic_search',
|
|
'reranking_enable': False,
|
|
'reranking_model': {
|
|
'reranking_provider_name': '',
|
|
'reranking_model_name': ''
|
|
},
|
|
'top_k': 2,
|
|
'score_threshold_enabled': False
|
|
}
|
|
|
|
class HitTestingService:
|
|
@classmethod
|
|
def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
|
|
if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
|
|
return {
|
|
"query": {
|
|
"content": query,
|
|
"tsne_position": {'x': 0, 'y': 0},
|
|
},
|
|
"records": []
|
|
}
|
|
|
|
start = time.perf_counter()
|
|
|
|
# get retrieval model , if the model is not setting , using default
|
|
if not retrieval_model:
|
|
retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
|
|
|
|
# get embedding model
|
|
model_manager = ModelManager()
|
|
embedding_model = model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
model_type=ModelType.TEXT_EMBEDDING,
|
|
provider=dataset.embedding_model_provider,
|
|
model=dataset.embedding_model
|
|
)
|
|
|
|
embeddings = CacheEmbedding(embedding_model)
|
|
|
|
all_documents = []
|
|
threads = []
|
|
|
|
# retrieval_model source with semantic
|
|
if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
|
|
embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'dataset_id': str(dataset.id),
|
|
'query': query,
|
|
'top_k': retrieval_model['top_k'],
|
|
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
|
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
|
|
'all_documents': all_documents,
|
|
'search_method': retrieval_model['search_method'],
|
|
'embeddings': embeddings
|
|
})
|
|
threads.append(embedding_thread)
|
|
embedding_thread.start()
|
|
|
|
# retrieval source with full text
|
|
if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
|
|
full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
|
|
'flask_app': current_app._get_current_object(),
|
|
'dataset_id': str(dataset.id),
|
|
'query': query,
|
|
'search_method': retrieval_model['search_method'],
|
|
'embeddings': embeddings,
|
|
'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
|
'top_k': retrieval_model['top_k'],
|
|
'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
|
|
'all_documents': all_documents
|
|
})
|
|
threads.append(full_text_index_thread)
|
|
full_text_index_thread.start()
|
|
|
|
for thread in threads:
|
|
thread.join()
|
|
|
|
if retrieval_model['search_method'] == 'hybrid_search':
|
|
model_manager = ModelManager()
|
|
rerank_model_instance = model_manager.get_model_instance(
|
|
tenant_id=dataset.tenant_id,
|
|
provider=retrieval_model['reranking_model']['reranking_provider_name'],
|
|
model_type=ModelType.RERANK,
|
|
model=retrieval_model['reranking_model']['reranking_model_name']
|
|
)
|
|
|
|
rerank_runner = RerankRunner(rerank_model_instance)
|
|
all_documents = rerank_runner.run(
|
|
query=query,
|
|
documents=all_documents,
|
|
score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
|
|
top_n=retrieval_model['top_k'],
|
|
user=f"account-{account.id}"
|
|
)
|
|
|
|
end = time.perf_counter()
|
|
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
|
|
|
|
dataset_query = DatasetQuery(
|
|
dataset_id=dataset.id,
|
|
content=query,
|
|
source='hit_testing',
|
|
created_by_role='account',
|
|
created_by=account.id
|
|
)
|
|
|
|
db.session.add(dataset_query)
|
|
db.session.commit()
|
|
|
|
return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
|
|
|
|
@classmethod
|
|
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):
|
|
text_embeddings = [
|
|
embeddings.embed_query(query)
|
|
]
|
|
|
|
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
|
|
|
|
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
|
|
|
|
query_position = tsne_position_data.pop(0)
|
|
|
|
i = 0
|
|
records = []
|
|
for document in documents:
|
|
index_node_id = document.metadata['doc_id']
|
|
|
|
segment = db.session.query(DocumentSegment).filter(
|
|
DocumentSegment.dataset_id == dataset.id,
|
|
DocumentSegment.enabled == True,
|
|
DocumentSegment.status == 'completed',
|
|
DocumentSegment.index_node_id == index_node_id
|
|
).first()
|
|
|
|
if not segment:
|
|
i += 1
|
|
continue
|
|
|
|
record = {
|
|
"segment": segment,
|
|
"score": document.metadata.get('score', None),
|
|
"tsne_position": tsne_position_data[i]
|
|
}
|
|
|
|
records.append(record)
|
|
|
|
i += 1
|
|
|
|
return {
|
|
"query": {
|
|
"content": query,
|
|
"tsne_position": query_position,
|
|
},
|
|
"records": records
|
|
}
|
|
|
|
@classmethod
|
|
def get_tsne_positions_from_embeddings(cls, embeddings: list):
|
|
embedding_length = len(embeddings)
|
|
if embedding_length <= 1:
|
|
return [{'x': 0, 'y': 0}]
|
|
|
|
concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
|
|
# concatenate_data = np.concatenate(embeddings)
|
|
|
|
perplexity = embedding_length / 2 + 1
|
|
if perplexity >= embedding_length:
|
|
perplexity = max(embedding_length - 1, 1)
|
|
|
|
tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
|
|
data_tsne = tsne.fit_transform(concatenate_data)
|
|
|
|
tsne_position_data = []
|
|
for i in range(len(data_tsne)):
|
|
tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
|
|
|
|
return tsne_position_data
|
|
|
|
@classmethod
|
|
def hit_testing_args_check(cls, args):
|
|
query = args['query']
|
|
|
|
if not query or len(query) > 250:
|
|
raise ValueError('Query is required and cannot exceed 250 characters')
|
|
|