mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 19:59:50 +08:00
516 lines
20 KiB
Python
516 lines
20 KiB
Python
import json
|
|
import logging
|
|
import uuid
|
|
from collections.abc import Mapping, Sequence
|
|
from typing import Optional, Union, cast
|
|
|
|
from core.agent.entities import AgentEntity, AgentToolEntity
|
|
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
|
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
|
from core.app.apps.base_app_queue_manager import AppQueueManager
|
|
from core.app.apps.base_app_runner import AppRunner
|
|
from core.app.entities.app_invoke_entities import (
|
|
AgentChatAppGenerateEntity,
|
|
ModelConfigWithCredentialsEntity,
|
|
)
|
|
from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
|
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
|
from core.file import file_manager
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
from core.model_manager import ModelInstance
|
|
from core.model_runtime.entities import (
|
|
AssistantPromptMessage,
|
|
LLMUsage,
|
|
PromptMessage,
|
|
PromptMessageContent,
|
|
PromptMessageTool,
|
|
SystemPromptMessage,
|
|
TextPromptMessageContent,
|
|
ToolPromptMessage,
|
|
UserPromptMessage,
|
|
)
|
|
from core.model_runtime.entities.message_entities import ImagePromptMessageContent
|
|
from core.model_runtime.entities.model_entities import ModelFeature
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
|
from core.prompt.utils.extract_thread_messages import extract_thread_messages
|
|
from core.tools.__base.tool import Tool
|
|
from core.tools.entities.tool_entities import (
|
|
ToolParameter,
|
|
)
|
|
from core.tools.tool_manager import ToolManager
|
|
from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
|
|
from extensions.ext_database import db
|
|
from factories import file_factory
|
|
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BaseAgentRunner(AppRunner):
|
|
def __init__(
|
|
self,
|
|
tenant_id: str,
|
|
application_generate_entity: AgentChatAppGenerateEntity,
|
|
conversation: Conversation,
|
|
app_config: AgentChatAppConfig,
|
|
model_config: ModelConfigWithCredentialsEntity,
|
|
config: AgentEntity,
|
|
queue_manager: AppQueueManager,
|
|
message: Message,
|
|
user_id: str,
|
|
model_instance: ModelInstance,
|
|
memory: Optional[TokenBufferMemory] = None,
|
|
prompt_messages: Optional[list[PromptMessage]] = None,
|
|
) -> None:
|
|
self.tenant_id = tenant_id
|
|
self.application_generate_entity = application_generate_entity
|
|
self.conversation = conversation
|
|
self.app_config = app_config
|
|
self.model_config = model_config
|
|
self.config = config
|
|
self.queue_manager = queue_manager
|
|
self.message = message
|
|
self.user_id = user_id
|
|
self.memory = memory
|
|
self.history_prompt_messages = self.organize_agent_history(prompt_messages=prompt_messages or [])
|
|
self.model_instance = model_instance
|
|
|
|
# init callback
|
|
self.agent_callback = DifyAgentCallbackHandler()
|
|
# init dataset tools
|
|
hit_callback = DatasetIndexToolCallbackHandler(
|
|
queue_manager=queue_manager,
|
|
app_id=self.app_config.app_id,
|
|
message_id=message.id,
|
|
user_id=user_id,
|
|
invoke_from=self.application_generate_entity.invoke_from,
|
|
)
|
|
self.dataset_tools = DatasetRetrieverTool.get_dataset_tools(
|
|
tenant_id=tenant_id,
|
|
dataset_ids=app_config.dataset.dataset_ids if app_config.dataset else [],
|
|
retrieve_config=app_config.dataset.retrieve_config if app_config.dataset else None,
|
|
return_resource=app_config.additional_features.show_retrieve_source,
|
|
invoke_from=application_generate_entity.invoke_from,
|
|
hit_callback=hit_callback,
|
|
)
|
|
# get how many agent thoughts have been created
|
|
self.agent_thought_count = (
|
|
db.session.query(MessageAgentThought)
|
|
.filter(
|
|
MessageAgentThought.message_id == self.message.id,
|
|
)
|
|
.count()
|
|
)
|
|
db.session.close()
|
|
|
|
# check if model supports stream tool call
|
|
llm_model = cast(LargeLanguageModel, model_instance.model_type_instance)
|
|
model_schema = llm_model.get_model_schema(model_instance.model, model_instance.credentials)
|
|
if model_schema and ModelFeature.STREAM_TOOL_CALL in (model_schema.features or []):
|
|
self.stream_tool_call = True
|
|
else:
|
|
self.stream_tool_call = False
|
|
|
|
# check if model supports vision
|
|
if model_schema and ModelFeature.VISION in (model_schema.features or []):
|
|
self.files = application_generate_entity.files
|
|
else:
|
|
self.files = []
|
|
self.query = None
|
|
self._current_thoughts: list[PromptMessage] = []
|
|
|
|
def _repack_app_generate_entity(
|
|
self, app_generate_entity: AgentChatAppGenerateEntity
|
|
) -> AgentChatAppGenerateEntity:
|
|
"""
|
|
Repack app generate entity
|
|
"""
|
|
if app_generate_entity.app_config.prompt_template.simple_prompt_template is None:
|
|
app_generate_entity.app_config.prompt_template.simple_prompt_template = ""
|
|
|
|
return app_generate_entity
|
|
|
|
def _convert_tool_to_prompt_message_tool(self, tool: AgentToolEntity) -> tuple[PromptMessageTool, Tool]:
|
|
"""
|
|
convert tool to prompt message tool
|
|
"""
|
|
tool_entity = ToolManager.get_agent_tool_runtime(
|
|
tenant_id=self.tenant_id,
|
|
app_id=self.app_config.app_id,
|
|
agent_tool=tool,
|
|
invoke_from=self.application_generate_entity.invoke_from,
|
|
)
|
|
assert tool_entity.entity.description
|
|
message_tool = PromptMessageTool(
|
|
name=tool.tool_name,
|
|
description=tool_entity.entity.description.llm,
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {},
|
|
"required": [],
|
|
},
|
|
)
|
|
|
|
parameters = tool_entity.get_merged_runtime_parameters()
|
|
for parameter in parameters:
|
|
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
|
continue
|
|
|
|
parameter_type = parameter.type.as_normal_type()
|
|
if parameter.type in {
|
|
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
|
ToolParameter.ToolParameterType.FILE,
|
|
ToolParameter.ToolParameterType.FILES,
|
|
}:
|
|
continue
|
|
enum = []
|
|
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
|
enum = [option.value for option in parameter.options]
|
|
|
|
message_tool.parameters["properties"][parameter.name] = {
|
|
"type": parameter_type,
|
|
"description": parameter.llm_description or "",
|
|
}
|
|
|
|
if len(enum) > 0:
|
|
message_tool.parameters["properties"][parameter.name]["enum"] = enum
|
|
|
|
if parameter.required:
|
|
message_tool.parameters["required"].append(parameter.name)
|
|
|
|
return message_tool, tool_entity
|
|
|
|
def _convert_dataset_retriever_tool_to_prompt_message_tool(self, tool: DatasetRetrieverTool) -> PromptMessageTool:
|
|
"""
|
|
convert dataset retriever tool to prompt message tool
|
|
"""
|
|
assert tool.entity.description
|
|
|
|
prompt_tool = PromptMessageTool(
|
|
name=tool.entity.identity.name,
|
|
description=tool.entity.description.llm,
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {},
|
|
"required": [],
|
|
},
|
|
)
|
|
|
|
for parameter in tool.get_runtime_parameters():
|
|
parameter_type = "string"
|
|
|
|
prompt_tool.parameters["properties"][parameter.name] = {
|
|
"type": parameter_type,
|
|
"description": parameter.llm_description or "",
|
|
}
|
|
|
|
if parameter.required:
|
|
if parameter.name not in prompt_tool.parameters["required"]:
|
|
prompt_tool.parameters["required"].append(parameter.name)
|
|
|
|
return prompt_tool
|
|
|
|
def _init_prompt_tools(self) -> tuple[Mapping[str, Tool], Sequence[PromptMessageTool]]:
|
|
"""
|
|
Init tools
|
|
"""
|
|
tool_instances = {}
|
|
prompt_messages_tools = []
|
|
|
|
for tool in self.app_config.agent.tools or [] if self.app_config.agent else []:
|
|
try:
|
|
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
except Exception:
|
|
# api tool may be deleted
|
|
continue
|
|
# save tool entity
|
|
tool_instances[tool.tool_name] = tool_entity
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
|
|
# convert dataset tools into ModelRuntime Tool format
|
|
for dataset_tool in self.dataset_tools:
|
|
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
# save prompt tool
|
|
prompt_messages_tools.append(prompt_tool)
|
|
# save tool entity
|
|
tool_instances[dataset_tool.entity.identity.name] = dataset_tool
|
|
|
|
return tool_instances, prompt_messages_tools
|
|
|
|
def update_prompt_message_tool(self, tool: Tool, prompt_tool: PromptMessageTool) -> PromptMessageTool:
|
|
"""
|
|
update prompt message tool
|
|
"""
|
|
# try to get tool runtime parameters
|
|
tool_runtime_parameters = tool.get_runtime_parameters() or []
|
|
|
|
for parameter in tool_runtime_parameters:
|
|
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
|
continue
|
|
|
|
parameter_type = parameter.type.as_normal_type()
|
|
if parameter.type in {
|
|
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
|
ToolParameter.ToolParameterType.FILE,
|
|
ToolParameter.ToolParameterType.FILES,
|
|
}:
|
|
continue
|
|
enum = []
|
|
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
|
enum = [option.value for option in parameter.options]
|
|
|
|
prompt_tool.parameters["properties"][parameter.name] = {
|
|
"type": parameter_type,
|
|
"description": parameter.llm_description or "",
|
|
}
|
|
|
|
if len(enum) > 0:
|
|
prompt_tool.parameters["properties"][parameter.name]["enum"] = enum
|
|
|
|
if parameter.required:
|
|
if parameter.name not in prompt_tool.parameters["required"]:
|
|
prompt_tool.parameters["required"].append(parameter.name)
|
|
|
|
return prompt_tool
|
|
|
|
def create_agent_thought(
|
|
self, message_id: str, message: str, tool_name: str, tool_input: str, messages_ids: list[str]
|
|
) -> MessageAgentThought:
|
|
"""
|
|
Create agent thought
|
|
"""
|
|
thought = MessageAgentThought(
|
|
message_id=message_id,
|
|
message_chain_id=None,
|
|
thought="",
|
|
tool=tool_name,
|
|
tool_labels_str="{}",
|
|
tool_meta_str="{}",
|
|
tool_input=tool_input,
|
|
message=message,
|
|
message_token=0,
|
|
message_unit_price=0,
|
|
message_price_unit=0,
|
|
message_files=json.dumps(messages_ids) if messages_ids else "",
|
|
answer="",
|
|
observation="",
|
|
answer_token=0,
|
|
answer_unit_price=0,
|
|
answer_price_unit=0,
|
|
tokens=0,
|
|
total_price=0,
|
|
position=self.agent_thought_count + 1,
|
|
currency="USD",
|
|
latency=0,
|
|
created_by_role="account",
|
|
created_by=self.user_id,
|
|
)
|
|
|
|
db.session.add(thought)
|
|
db.session.commit()
|
|
db.session.refresh(thought)
|
|
db.session.close()
|
|
|
|
self.agent_thought_count += 1
|
|
|
|
return thought
|
|
|
|
def save_agent_thought(
|
|
self,
|
|
agent_thought: MessageAgentThought,
|
|
tool_name: str | None,
|
|
tool_input: Union[str, dict, None],
|
|
thought: str | None,
|
|
observation: Union[str, dict, None],
|
|
tool_invoke_meta: Union[str, dict, None],
|
|
answer: str | None,
|
|
messages_ids: list[str],
|
|
llm_usage: LLMUsage | None = None,
|
|
):
|
|
"""
|
|
Save agent thought
|
|
"""
|
|
updated_agent_thought = (
|
|
db.session.query(MessageAgentThought).filter(MessageAgentThought.id == agent_thought.id).first()
|
|
)
|
|
if not updated_agent_thought:
|
|
raise ValueError("agent thought not found")
|
|
|
|
if thought is not None:
|
|
updated_agent_thought.thought = thought
|
|
|
|
if tool_name is not None:
|
|
updated_agent_thought.tool = tool_name
|
|
|
|
if tool_input is not None:
|
|
if isinstance(tool_input, dict):
|
|
try:
|
|
tool_input = json.dumps(tool_input, ensure_ascii=False)
|
|
except Exception as e:
|
|
tool_input = json.dumps(tool_input)
|
|
|
|
updated_agent_thought.tool_input = tool_input
|
|
|
|
if observation is not None:
|
|
if isinstance(observation, dict):
|
|
try:
|
|
observation = json.dumps(observation, ensure_ascii=False)
|
|
except Exception as e:
|
|
observation = json.dumps(observation)
|
|
|
|
updated_agent_thought.observation = observation
|
|
|
|
if answer is not None:
|
|
updated_agent_thought.answer = answer
|
|
|
|
if messages_ids is not None and len(messages_ids) > 0:
|
|
updated_agent_thought.message_files = json.dumps(messages_ids)
|
|
|
|
if llm_usage:
|
|
updated_agent_thought.message_token = llm_usage.prompt_tokens
|
|
updated_agent_thought.message_price_unit = llm_usage.prompt_price_unit
|
|
updated_agent_thought.message_unit_price = llm_usage.prompt_unit_price
|
|
updated_agent_thought.answer_token = llm_usage.completion_tokens
|
|
updated_agent_thought.answer_price_unit = llm_usage.completion_price_unit
|
|
updated_agent_thought.answer_unit_price = llm_usage.completion_unit_price
|
|
updated_agent_thought.tokens = llm_usage.total_tokens
|
|
updated_agent_thought.total_price = llm_usage.total_price
|
|
|
|
# check if tool labels is not empty
|
|
labels = updated_agent_thought.tool_labels or {}
|
|
tools = updated_agent_thought.tool.split(";") if updated_agent_thought.tool else []
|
|
for tool in tools:
|
|
if not tool:
|
|
continue
|
|
if tool not in labels:
|
|
tool_label = ToolManager.get_tool_label(tool)
|
|
if tool_label:
|
|
labels[tool] = tool_label.to_dict()
|
|
else:
|
|
labels[tool] = {"en_US": tool, "zh_Hans": tool}
|
|
|
|
updated_agent_thought.tool_labels_str = json.dumps(labels)
|
|
|
|
if tool_invoke_meta is not None:
|
|
if isinstance(tool_invoke_meta, dict):
|
|
try:
|
|
tool_invoke_meta = json.dumps(tool_invoke_meta, ensure_ascii=False)
|
|
except Exception as e:
|
|
tool_invoke_meta = json.dumps(tool_invoke_meta)
|
|
|
|
updated_agent_thought.tool_meta_str = tool_invoke_meta
|
|
|
|
db.session.commit()
|
|
db.session.close()
|
|
|
|
def organize_agent_history(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
|
"""
|
|
Organize agent history
|
|
"""
|
|
result = []
|
|
# check if there is a system message in the beginning of the conversation
|
|
for prompt_message in prompt_messages:
|
|
if isinstance(prompt_message, SystemPromptMessage):
|
|
result.append(prompt_message)
|
|
|
|
messages: list[Message] = (
|
|
db.session.query(Message)
|
|
.filter(
|
|
Message.conversation_id == self.message.conversation_id,
|
|
)
|
|
.order_by(Message.created_at.desc())
|
|
.all()
|
|
)
|
|
|
|
messages = list(reversed(extract_thread_messages(messages)))
|
|
|
|
for message in messages:
|
|
if message.id == self.message.id:
|
|
continue
|
|
|
|
result.append(self.organize_agent_user_prompt(message))
|
|
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
|
|
if agent_thoughts:
|
|
for agent_thought in agent_thoughts:
|
|
tools = agent_thought.tool
|
|
if tools:
|
|
tools = tools.split(";")
|
|
tool_calls: list[AssistantPromptMessage.ToolCall] = []
|
|
tool_call_response: list[ToolPromptMessage] = []
|
|
try:
|
|
tool_inputs = json.loads(agent_thought.tool_input)
|
|
except Exception as e:
|
|
tool_inputs = {tool: {} for tool in tools}
|
|
try:
|
|
tool_responses = json.loads(agent_thought.observation)
|
|
except Exception as e:
|
|
tool_responses = dict.fromkeys(tools, agent_thought.observation)
|
|
|
|
for tool in tools:
|
|
# generate a uuid for tool call
|
|
tool_call_id = str(uuid.uuid4())
|
|
tool_calls.append(
|
|
AssistantPromptMessage.ToolCall(
|
|
id=tool_call_id,
|
|
type="function",
|
|
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
|
name=tool,
|
|
arguments=json.dumps(tool_inputs.get(tool, {})),
|
|
),
|
|
)
|
|
)
|
|
tool_call_response.append(
|
|
ToolPromptMessage(
|
|
content=tool_responses.get(tool, agent_thought.observation),
|
|
name=tool,
|
|
tool_call_id=tool_call_id,
|
|
)
|
|
)
|
|
|
|
result.extend(
|
|
[
|
|
AssistantPromptMessage(
|
|
content=agent_thought.thought,
|
|
tool_calls=tool_calls,
|
|
),
|
|
*tool_call_response,
|
|
]
|
|
)
|
|
if not tools:
|
|
result.append(AssistantPromptMessage(content=agent_thought.thought))
|
|
else:
|
|
if message.answer:
|
|
result.append(AssistantPromptMessage(content=message.answer))
|
|
|
|
db.session.close()
|
|
|
|
return result
|
|
|
|
def organize_agent_user_prompt(self, message: Message) -> UserPromptMessage:
|
|
files = db.session.query(MessageFile).filter(MessageFile.message_id == message.id).all()
|
|
if not files:
|
|
return UserPromptMessage(content=message.query)
|
|
file_extra_config = FileUploadConfigManager.convert(message.app_model_config.to_dict())
|
|
if not file_extra_config:
|
|
return UserPromptMessage(content=message.query)
|
|
|
|
image_detail_config = file_extra_config.image_config.detail if file_extra_config.image_config else None
|
|
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
|
|
|
file_objs = file_factory.build_from_message_files(
|
|
message_files=files, tenant_id=self.tenant_id, config=file_extra_config
|
|
)
|
|
if not file_objs:
|
|
return UserPromptMessage(content=message.query)
|
|
prompt_message_contents: list[PromptMessageContent] = []
|
|
prompt_message_contents.append(TextPromptMessageContent(data=message.query))
|
|
for file in file_objs:
|
|
prompt_message_contents.append(
|
|
file_manager.to_prompt_message_content(
|
|
file,
|
|
image_detail_config=image_detail_config,
|
|
)
|
|
)
|
|
return UserPromptMessage(content=prompt_message_contents)
|