From 5c4d436f1e8b5ed184777ce0b23bb1252b91d3fd Mon Sep 17 00:00:00 2001 From: Eric Ciarla Date: Thu, 26 Sep 2024 14:46:48 -0400 Subject: [PATCH] Create o1_job_recommender.py --- .../o1_job_recommender/o1_job_recommender.py | 283 ++++++++++++++++++ 1 file changed, 283 insertions(+) create mode 100644 examples/o1_job_recommender/o1_job_recommender.py diff --git a/examples/o1_job_recommender/o1_job_recommender.py b/examples/o1_job_recommender/o1_job_recommender.py new file mode 100644 index 00000000..9cc63050 --- /dev/null +++ b/examples/o1_job_recommender/o1_job_recommender.py @@ -0,0 +1,283 @@ +# %% +# %% +import os +import requests +import json +from dotenv import load_dotenv +from openai import OpenAI + +# ANSI color codes +class Colors: + CYAN = '\033[96m' + YELLOW = '\033[93m' + GREEN = '\033[92m' + RED = '\033[91m' + MAGENTA = '\033[95m' + BLUE = '\033[94m' + RESET = '\033[0m' +# Load environment variables +load_dotenv() + +# Initialize the FirecrawlApp with your API key +firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") +client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) + +# Set the jobs page URL +jobs_page_url = "https://openai.com/careers/search" + +# Resume +resume_paste = """" +Eric Ciarla +Co-Founder @ Firecrawl +San Francisco, California, United States +Summary +Building… +Experience +Firecrawl +Co-Founder +April 2024 - Present (6 months) +San Francisco, California, United States +Firecrawl by Mendable. Building data extraction infrastructure for AI. Used by +Amazon, Zapier, and Nvidia (YC S22) +Mendable +2 years 7 months +Co-Founder @ Mendable.ai +March 2022 - Present (2 years 7 months) +San Francisco, California, United States +- Built an AI powered search platform that that served millions of queries for +hundreds of customers (YC S22) +- We were one of the first LLM powered apps adopted by industry leaders like +Coinbase, Snap, DoorDash, and MongoDB +Co-Founder @ SideGuide +March 2022 - Present (2 years 7 months) +San Francisco, California, United States +- Built and scaled an online course platform with a community of over 50,000 +developers +- Selected for Y Combinator S22 batch, 2% acceptance rate +Fracta +Data Engineer +2022 - 2022 (less than a year) +Palo Alto, California, United States +- Demoed tool during sales calls and provided technical support during the +entire customer lifecycle +Page 1 of 2 +- Mined, wrangled, & visualized geospatial and water utility data for predictive +analytics & ML workflows (Python, QGIS) +Ford Motor Company +Data Scientist +2021 - 2021 (less than a year) +Dearborn, Michigan, United States +- Extracted, cleaned, and joined data from multiple sources using SQL, +Hadoop, and Alteryx +- Used Bayesian Network Structure Learning (BNLearn, R) to uncover the +relationships between survey free response verbatim topics (derived from +natural language processing models) and numerical customer experience +scores +MDRemindME +Co-Founder +2018 - 2020 (2 years) +Durham, New Hampshire, United States +- Founded and led a healthtech startup aimed at improving patient adherence +to treatment plans through an innovative engagement and retention tool +- Piloted the product with healthcare providers and patients, gathering critical +insights to refine functionality and enhance user experience +- Secured funding through National Science Foundation I-CORPS Grant and +UNH Entrepreneurship Center Seed Grant +Education +Y Combinator +S22 +University of New Hampshire +Economics and Philosophy +""" + +# First, scrape the jobs page using Firecrawl +try: + response = requests.post( + "https://api.firecrawl.dev/v1/scrape", + headers={ + "Content-Type": "application/json", + "Authorization": f"Bearer {firecrawl_api_key}" + }, + json={ + "url": jobs_page_url, + "formats": ["markdown"] + } + ) + + if response.status_code == 200: + result = response.json() + if result.get('success'): + html_content = result['data']['markdown'] + # Define the O1 prompt for extracting apply links + prompt = f""" + Extract up to 30 job application links from the given markdown content. + Return the result as a JSON object with a single key 'apply_links' containing an array of strings (the links). + The output should be a valid JSON object, with no additional text. + Do not include any JSON markdown formatting or code block indicators. + Provide only the raw JSON object as the response. + + Example of the expected format: + {{"apply_links": ["https://example.com/job1", "https://example.com/job2", ...]}} + + Markdown content: + {html_content[:100000]} + """ + print(f"{Colors.GREEN}Successfully scraped the jobs page{Colors.RESET}") + else: + print(f"{Colors.RED}Failed to scrape the jobs page: {result.get('message', 'Unknown error')}{Colors.RESET}") + html_content = "" + else: + print(f"{Colors.RED}Error {response.status_code}: {response.text}{Colors.RESET}") + html_content = "" +except requests.RequestException as e: + print(f"{Colors.RED}An error occurred while scraping: {str(e)}{Colors.RESET}") + html_content = "" +except json.JSONDecodeError as e: + print(f"{Colors.RED}Error decoding JSON response: {str(e)}{Colors.RESET}") + html_content = "" +except Exception as e: + print(f"{Colors.RED}An unexpected error occurred while scraping: {str(e)}{Colors.RESET}") + html_content = "" + +# Extract apply links from the scraped HTML using O1 +apply_links = [] +if html_content: + try: + completion = client.chat.completions.create( + model="gpt-4o", + messages=[ + { + "role": "user", + "content": prompt + } + ] + ) + + if completion.choices: + print(completion.choices[0].message.content) + result = json.loads(completion.choices[0].message.content.strip()) + + apply_links = result['apply_links'] + print(f"{Colors.GREEN}Successfully extracted {len(apply_links)} apply links{Colors.RESET}") + else: + print(f"{Colors.RED}No apply links extracted{Colors.RESET}") + except json.JSONDecodeError as e: + print(f"{Colors.RED}Error decoding JSON from OpenAI response: {str(e)}{Colors.RESET}") + except KeyError as e: + print(f"{Colors.RED}Expected key not found in OpenAI response: {str(e)}{Colors.RESET}") + except Exception as e: + print(f"{Colors.RED}An unexpected error occurred during extraction: {str(e)}{Colors.RESET}") +else: + print(f"{Colors.RED}No HTML content to process{Colors.RESET}") + +# Initialize a list to store the extracted data +extracted_data = [] + + +# %% +print(f"{Colors.CYAN}Apply links:{Colors.RESET}") +for link in apply_links: + print(f"{Colors.YELLOW}{link}{Colors.RESET}") + +# %% +# Process each apply link +for index, link in enumerate(apply_links): + try: + response = requests.post( + "https://api.firecrawl.dev/v1/scrape", + headers={ + "Content-Type": "application/json", + "Authorization": f"Bearer {firecrawl_api_key}" + }, + json={ + "url": link, + "formats": ["extract"], + "actions": [{ + "type": "click", + "selector": "#job-overview" + }], + "extract": { + "schema": { + "type": "object", + "properties": { + "job_title": {"type": "string"}, + "sub_division_of_organization": {"type": "string"}, + "key_skills": {"type": "array", "items": {"type": "string"}}, + "compensation": {"type": "string"}, + "location": {"type": "string"}, + "apply_link": {"type": "string"} + }, + "required": ["job_title", "sub_division_of_organization", "key_skills", "compensation", "location", "apply_link"] + } + } + } + ) + + if response.status_code == 200: + result = response.json() + if result.get('success'): + extracted_data.append(result['data']['extract']) + print(f"{Colors.GREEN}Data extracted for job {index}{Colors.RESET}") + else: + print(f"") + else: + print(f"") + except Exception as e: + print(f"") + + +# %% +# %% +# Print the extracted data +print(f"{Colors.CYAN}Extracted data:{Colors.RESET}") +for job in extracted_data: + print(json.dumps(job, indent=2)) + print(f"{Colors.MAGENTA}{'-' * 50}{Colors.RESET}") + + +# %% + + + + +# Use o1-preview to choose which jobs should be applied to based on the resume +prompt = f""" +Please analyze the resume and job listings, and return a JSON list of the top 3 roles that best fit the candidate's experience and skills. Include only the job title, compensation, and apply link for each recommended role. The output should be a valid JSON array of objects in the following format, with no additional text: + +[ + {{ + "job_title": "Job Title", + "compensation": "Compensation (if available, otherwise empty string)", + "apply_link": "Application URL" + }}, + ... +] + +Based on the following resume: +{resume_paste} + +And the following job listings: +{json.dumps(extracted_data, indent=2)} +""" + +completion = client.chat.completions.create( + model="o1-preview", + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": prompt + } + ] + } + ] +) + +recommended_jobs = json.loads(completion.choices[0].message.content.strip()) + +print(f"{Colors.CYAN}Recommended jobs:{Colors.RESET}") +print(json.dumps(recommended_jobs, indent=2)) + +