From d76cb6a6d223b4b05d6ba05b4497118978607ca5 Mon Sep 17 00:00:00 2001 From: Harsha Date: Tue, 17 Sep 2024 12:56:05 -0500 Subject: [PATCH] fix space in the folder name --- .../o1_web_crawler.py | 304 +++++++++--------- .../requirements.txt | 4 +- 2 files changed, 154 insertions(+), 154 deletions(-) rename examples/{o1_web_crawler => o1_web_crawler}/o1_web_crawler.py (97%) rename examples/{o1_web_crawler => o1_web_crawler}/requirements.txt (94%) diff --git a/examples/o1_web_crawler /o1_web_crawler.py b/examples/o1_web_crawler/o1_web_crawler.py similarity index 97% rename from examples/o1_web_crawler /o1_web_crawler.py rename to examples/o1_web_crawler/o1_web_crawler.py index 45bbd1ee..ebe4bcbf 100644 --- a/examples/o1_web_crawler /o1_web_crawler.py +++ b/examples/o1_web_crawler/o1_web_crawler.py @@ -1,152 +1,152 @@ -import os -from firecrawl import FirecrawlApp -import json -from dotenv import load_dotenv -from openai import OpenAI - -# ANSI color codes -class Colors: - CYAN = '\033[96m' - YELLOW = '\033[93m' - GREEN = '\033[92m' - RED = '\033[91m' - MAGENTA = '\033[95m' - BLUE = '\033[94m' - RESET = '\033[0m' - -# Load environment variables -load_dotenv() - -# Retrieve API keys from environment variables -firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") -openai_api_key = os.getenv("OPENAI_API_KEY") - -# Initialize the FirecrawlApp and OpenAI client -app = FirecrawlApp(api_key=firecrawl_api_key) -client = OpenAI(api_key=openai_api_key) - -# Find the page that most likely contains the objective -def find_relevant_page_via_map(objective, url, app, client): - try: - print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}") - print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}") - - map_prompt = f""" - The map function generates a list of URLs from a website and it accepts a search parameter. Based on the objective of: {objective}, come up with a 1-2 word search parameter that will help us find the information we need. Only respond with 1-2 words nothing else. - """ - - print(f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}") - completion = client.chat.completions.create( - model="o1-preview", - messages=[ - { - "role": "user", - "content": [ - { - "type": "text", - "text": map_prompt - } - ] - } - ] - ) - - map_search_parameter = completion.choices[0].message.content - print(f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}") - - print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}") - map_website = app.map_url(url, params={"search": map_search_parameter}) - print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}") - print(f"{Colors.GREEN}Located {len(map_website)} relevant links.{Colors.RESET}") - return map_website - except Exception as e: - print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}") - return None - -# Scrape the top 3 pages and see if the objective is met, if so return in json format else return None -def find_objective_in_top_pages(map_website, objective, app, client): - try: - # Get top 3 links from the map result - top_links = map_website[:3] if isinstance(map_website, list) else [] - print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}") - - for link in top_links: - print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}") - # Scrape the page - scrape_result = app.scrape_url(link, params={'formats': ['markdown']}) - print(f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}") - - - # Check if objective is met - check_prompt = f""" - Given the following scraped content and objective, determine if the objective is met. - If it is, extract the relevant information in a simple and concise JSON format. Use only the necessary fields and avoid nested structures if possible. - If the objective is not met with confidence, respond with 'Objective not met'. - - Objective: {objective} - Scraped content: {scrape_result['markdown']} - - Remember: - 1. Only return JSON if you are confident the objective is fully met. - 2. Keep the JSON structure as simple and flat as possible. - 3. Do not include any explanations or markdown formatting in your response. - """ - - completion = client.chat.completions.create( - model="o1-preview", - messages=[ - { - "role": "user", - "content": [ - { - "type": "text", - "text": check_prompt - } - ] - } - ] - ) - - result = completion.choices[0].message.content - - if result != "Objective not met": - print(f"{Colors.GREEN}Objective potentially fulfilled. Relevant information identified.{Colors.RESET}") - try: - return json.loads(result) - except json.JSONDecodeError: - print(f"{Colors.RED}Error in parsing response. Proceeding to next page...{Colors.RESET}") - else: - print(f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}") - - print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}") - return None - - except Exception as e: - print(f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}") - return None - -# Main function to execute the process -def main(): - # Get user input - url = input(f"{Colors.BLUE}Enter the website to crawl: {Colors.RESET}") - objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}") - - print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}") - # Find the relevant page - map_website = find_relevant_page_via_map(objective, url, app, client) - - if map_website: - print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis...{Colors.RESET}") - # Find objective in top pages - result = find_objective_in_top_pages(map_website, objective, app, client) - - if result: - print(f"{Colors.GREEN}Objective successfully fulfilled. Extracted information:{Colors.RESET}") - print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}") - else: - print(f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}") - else: - print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}") - -if __name__ == "__main__": - main() +import os +from firecrawl import FirecrawlApp +import json +from dotenv import load_dotenv +from openai import OpenAI + +# ANSI color codes +class Colors: + CYAN = '\033[96m' + YELLOW = '\033[93m' + GREEN = '\033[92m' + RED = '\033[91m' + MAGENTA = '\033[95m' + BLUE = '\033[94m' + RESET = '\033[0m' + +# Load environment variables +load_dotenv() + +# Retrieve API keys from environment variables +firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") +openai_api_key = os.getenv("OPENAI_API_KEY") + +# Initialize the FirecrawlApp and OpenAI client +app = FirecrawlApp(api_key=firecrawl_api_key) +client = OpenAI(api_key=openai_api_key) + +# Find the page that most likely contains the objective +def find_relevant_page_via_map(objective, url, app, client): + try: + print(f"{Colors.CYAN}Understood. The objective is: {objective}{Colors.RESET}") + print(f"{Colors.CYAN}Initiating search on the website: {url}{Colors.RESET}") + + map_prompt = f""" + The map function generates a list of URLs from a website and it accepts a search parameter. Based on the objective of: {objective}, come up with a 1-2 word search parameter that will help us find the information we need. Only respond with 1-2 words nothing else. + """ + + print(f"{Colors.YELLOW}Analyzing objective to determine optimal search parameter...{Colors.RESET}") + completion = client.chat.completions.create( + model="o1-preview", + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": map_prompt + } + ] + } + ] + ) + + map_search_parameter = completion.choices[0].message.content + print(f"{Colors.GREEN}Optimal search parameter identified: {map_search_parameter}{Colors.RESET}") + + print(f"{Colors.YELLOW}Mapping website using the identified search parameter...{Colors.RESET}") + map_website = app.map_url(url, params={"search": map_search_parameter}) + print(f"{Colors.GREEN}Website mapping completed successfully.{Colors.RESET}") + print(f"{Colors.GREEN}Located {len(map_website)} relevant links.{Colors.RESET}") + return map_website + except Exception as e: + print(f"{Colors.RED}Error encountered during relevant page identification: {str(e)}{Colors.RESET}") + return None + +# Scrape the top 3 pages and see if the objective is met, if so return in json format else return None +def find_objective_in_top_pages(map_website, objective, app, client): + try: + # Get top 3 links from the map result + top_links = map_website[:3] if isinstance(map_website, list) else [] + print(f"{Colors.CYAN}Proceeding to analyze top {len(top_links)} links: {top_links}{Colors.RESET}") + + for link in top_links: + print(f"{Colors.YELLOW}Initiating scrape of page: {link}{Colors.RESET}") + # Scrape the page + scrape_result = app.scrape_url(link, params={'formats': ['markdown']}) + print(f"{Colors.GREEN}Page scraping completed successfully.{Colors.RESET}") + + + # Check if objective is met + check_prompt = f""" + Given the following scraped content and objective, determine if the objective is met. + If it is, extract the relevant information in a simple and concise JSON format. Use only the necessary fields and avoid nested structures if possible. + If the objective is not met with confidence, respond with 'Objective not met'. + + Objective: {objective} + Scraped content: {scrape_result['markdown']} + + Remember: + 1. Only return JSON if you are confident the objective is fully met. + 2. Keep the JSON structure as simple and flat as possible. + 3. Do not include any explanations or markdown formatting in your response. + """ + + completion = client.chat.completions.create( + model="o1-preview", + messages=[ + { + "role": "user", + "content": [ + { + "type": "text", + "text": check_prompt + } + ] + } + ] + ) + + result = completion.choices[0].message.content + + if result != "Objective not met": + print(f"{Colors.GREEN}Objective potentially fulfilled. Relevant information identified.{Colors.RESET}") + try: + return json.loads(result) + except json.JSONDecodeError: + print(f"{Colors.RED}Error in parsing response. Proceeding to next page...{Colors.RESET}") + else: + print(f"{Colors.YELLOW}Objective not met on this page. Proceeding to next link...{Colors.RESET}") + + print(f"{Colors.RED}All available pages analyzed. Objective not fulfilled in examined content.{Colors.RESET}") + return None + + except Exception as e: + print(f"{Colors.RED}Error encountered during page analysis: {str(e)}{Colors.RESET}") + return None + +# Main function to execute the process +def main(): + # Get user input + url = input(f"{Colors.BLUE}Enter the website to crawl: {Colors.RESET}") + objective = input(f"{Colors.BLUE}Enter your objective: {Colors.RESET}") + + print(f"{Colors.YELLOW}Initiating web crawling process...{Colors.RESET}") + # Find the relevant page + map_website = find_relevant_page_via_map(objective, url, app, client) + + if map_website: + print(f"{Colors.GREEN}Relevant pages identified. Proceeding with detailed analysis...{Colors.RESET}") + # Find objective in top pages + result = find_objective_in_top_pages(map_website, objective, app, client) + + if result: + print(f"{Colors.GREEN}Objective successfully fulfilled. Extracted information:{Colors.RESET}") + print(f"{Colors.MAGENTA}{json.dumps(result, indent=2)}{Colors.RESET}") + else: + print(f"{Colors.RED}Unable to fulfill the objective with the available content.{Colors.RESET}") + else: + print(f"{Colors.RED}No relevant pages identified. Consider refining the search parameters or trying a different website.{Colors.RESET}") + +if __name__ == "__main__": + main() diff --git a/examples/o1_web_crawler /requirements.txt b/examples/o1_web_crawler/requirements.txt similarity index 94% rename from examples/o1_web_crawler /requirements.txt rename to examples/o1_web_crawler/requirements.txt index 249f8beb..188af8ec 100644 --- a/examples/o1_web_crawler /requirements.txt +++ b/examples/o1_web_crawler/requirements.txt @@ -1,3 +1,3 @@ -firecrawl-py -python-dotenv +firecrawl-py +python-dotenv openai \ No newline at end of file