firecrawl/apps/python-sdk/example.py
rafaelmmiller 80d6cb16fb sdks wip
2024-11-14 15:51:27 -03:00

159 lines
4.1 KiB
Python

import time
import nest_asyncio
import uuid
from firecrawl.firecrawl import FirecrawlApp
from pydantic import BaseModel, Field
from typing import List
app = FirecrawlApp(api_key="fc-")
# Scrape a website:
scrape_result = app.scrape_url('firecrawl.dev')
print(scrape_result['markdown'])
# Test batch scrape
urls = ['https://example.com', 'https://docs.firecrawl.dev']
batch_scrape_params = {
'formats': ['markdown', 'html'],
}
# Synchronous batch scrape
batch_result = app.batch_scrape_urls(urls, batch_scrape_params)
print("Synchronous Batch Scrape Result:")
print(batch_result['data'][0]['markdown'])
# Asynchronous batch scrape
async_batch_result = app.async_batch_scrape_urls(urls, batch_scrape_params)
print("\nAsynchronous Batch Scrape Result:")
print(async_batch_result)
# Crawl a website:
idempotency_key = str(uuid.uuid4()) # optional idempotency key
crawl_result = app.crawl_url('firecrawl.dev', {'excludePaths': ['blog/*']}, 2, idempotency_key)
print(crawl_result)
# Asynchronous Crawl a website:
async_result = app.async_crawl_url('firecrawl.dev', {'excludePaths': ['blog/*']}, "")
print(async_result)
crawl_status = app.check_crawl_status(async_result['id'])
print(crawl_status)
attempts = 15
while attempts > 0 and crawl_status['status'] != 'completed':
print(crawl_status)
crawl_status = app.check_crawl_status(async_result['id'])
attempts -= 1
time.sleep(1)
crawl_status = app.get_crawl_status(async_result['id'])
print(crawl_status)
# LLM Extraction:
# Define schema to extract contents into using pydantic
class ArticleSchema(BaseModel):
title: str
points: int
by: str
commentsURL: str
class TopArticlesSchema(BaseModel):
top: List[ArticleSchema] = Field(..., max_items=5, description="Top 5 stories")
llm_extraction_result = app.scrape_url('https://news.ycombinator.com', {
'formats': ['extract'],
'extract': {
'schema': TopArticlesSchema.model_json_schema()
}
})
print(llm_extraction_result['extract'])
# # Define schema to extract contents into using json schema
json_schema = {
"type": "object",
"properties": {
"top": {
"type": "array",
"items": {
"type": "object",
"properties": {
"title": {"type": "string"},
"points": {"type": "number"},
"by": {"type": "string"},
"commentsURL": {"type": "string"}
},
"required": ["title", "points", "by", "commentsURL"]
},
"minItems": 5,
"maxItems": 5,
"description": "Top 5 stories on Hacker News"
}
},
"required": ["top"]
}
app2 = FirecrawlApp(api_key="fc-", version="v0")
llm_extraction_result = app2.scrape_url('https://news.ycombinator.com', {
'extractorOptions': {
'extractionSchema': json_schema,
'mode': 'llm-extraction'
},
'pageOptions':{
'onlyMainContent': True
}
})
# print(llm_extraction_result['llm_extraction'])
# Map a website:
map_result = app.map_url('https://firecrawl.dev', { 'search': 'blog' })
print(map_result)
# Extract URLs:
class ExtractSchema(BaseModel):
title: str
description: str
links: List[str]
# Define the schema using Pydantic
extract_schema = ExtractSchema.schema()
# Perform the extraction
extract_result = app.extract_urls(['https://firecrawl.dev'], {
'prompt': "Extract the title, description, and links from the website",
'schema': extract_schema
})
print(extract_result)
# Crawl a website with WebSockets:
# inside an async function...
nest_asyncio.apply()
# Define event handlers
def on_document(detail):
print("DOC", detail)
def on_error(detail):
print("ERR", detail['error'])
def on_done(detail):
print("DONE", detail['status'])
# Function to start the crawl and watch process
async def start_crawl_and_watch():
# Initiate the crawl job and get the watcher
watcher = app.crawl_url_and_watch('firecrawl.dev', { 'excludePaths': ['blog/*'], 'limit': 5 })
# Add event listeners
watcher.add_event_listener("document", on_document)
watcher.add_event_listener("error", on_error)
watcher.add_event_listener("done", on_done)
# Start the watcher
await watcher.connect()