dify/api/core/indexing_runner.py

868 lines
37 KiB
Python
Raw Normal View History

2023-05-15 08:51:32 +08:00
import datetime
import json
import logging
2023-05-15 08:51:32 +08:00
import re
import threading
2023-05-15 08:51:32 +08:00
import time
import uuid
from typing import Optional, List, cast, Type, Union, Literal, AbstractSet, Collection, Any
from flask import current_app, Flask
from flask_login import current_user
from langchain.schema import Document
from langchain.text_splitter import TextSplitter, TS, TokenTextSplitter
from sqlalchemy.orm.exc import ObjectDeletedError
2023-05-15 08:51:32 +08:00
from core.data_loader.file_extractor import FileExtractor
from core.data_loader.loader.notion import NotionLoader
from core.docstore.dataset_docstore import DatasetDocumentStore
from core.generator.llm_generator import LLMGenerator
from core.index.index import IndexBuilder
from core.model_manager import ModelManager
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.entities.model_entities import ModelType, PriceType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter, EnhanceRecursiveCharacterTextSplitter
2023-05-15 08:51:32 +08:00
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import Document as DatasetDocument
from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
2023-05-15 08:51:32 +08:00
from models.model import UploadFile
from models.source import DataSourceBinding
2023-05-15 08:51:32 +08:00
class IndexingRunner:
def __init__(self):
2023-05-15 08:51:32 +08:00
self.storage = storage
self.model_manager = ModelManager()
2023-05-15 08:51:32 +08:00
def run(self, dataset_documents: List[DatasetDocument]):
2023-05-15 08:51:32 +08:00
"""Run the indexing process."""
for dataset_document in dataset_documents:
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
# load file
text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._step_split(
text_docs=text_docs,
splitter=splitter,
dataset=dataset,
dataset_document=dataset_document,
processing_rule=processing_rule
)
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except ObjectDeletedError:
logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
def run_in_splitting_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is splitting."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
for document_segment in document_segments:
db.session.delete(document_segment)
db.session.commit()
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
first()
# load file
text_docs = self._load_data(dataset_document, processing_rule.mode == 'automatic')
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._step_split(
text_docs=text_docs,
splitter=splitter,
dataset=dataset,
dataset_document=dataset_document,
processing_rule=processing_rule
)
2023-05-15 08:51:32 +08:00
# build index
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
2023-05-15 08:51:32 +08:00
def run_in_indexing_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is indexing."""
try:
# get dataset
dataset = Dataset.query.filter_by(
id=dataset_document.dataset_id
).first()
2023-05-15 08:51:32 +08:00
if not dataset:
raise ValueError("no dataset found")
2023-05-15 08:51:32 +08:00
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=dataset_document.id
).all()
documents = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
document = Document(
page_content=document_segment.content,
metadata={
"doc_id": document_segment.index_node_id,
"doc_hash": document_segment.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
}
)
documents.append(document)
2023-05-15 08:51:32 +08:00
# build index
self._build_index(
dataset=dataset,
dataset_document=dataset_document,
documents=documents
)
except DocumentIsPausedException:
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = 'error'
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = 'error'
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.utcnow()
db.session.commit()
2023-05-15 08:51:32 +08:00
def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
2023-05-15 08:51:32 +08:00
"""
Estimate the indexing for the document.
"""
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
if indexing_technique == 'high_quality':
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
tokens = 0
preview_texts = []
total_segments = 0
for file_detail in file_details:
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
2023-05-15 08:51:32 +08:00
# load data from file
text_docs = FileExtractor.load(file_detail, is_automatic=processing_rule.mode == 'automatic')
# get splitter
splitter = self._get_splitter(processing_rule)
2023-05-15 08:51:32 +08:00
# split to documents
documents = self._split_to_documents_for_estimate(
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' or embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[self.filter_string(document.page_content)]
)
if doc_form and doc_form == 'qa_model':
model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
price_info = model_type_instance.get_price(
model=model_instance.model,
credentials=model_instance.credentials,
price_type=PriceType.INPUT,
tokens=total_segments * 2000,
)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(price_info.total_amount),
"currency": price_info.currency,
"qa_preview": document_qa_list,
"preview": preview_texts
}
if embedding_model_instance:
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
"preview": preview_texts
}
def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
indexing_technique: str = 'economy') -> dict:
"""
Estimate the indexing for the document.
"""
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(
id=dataset_id
).first()
if not dataset:
raise ValueError('Dataset not found.')
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
if indexing_technique == 'high_quality':
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
# load data from notion
2023-05-15 08:51:32 +08:00
tokens = 0
preview_texts = []
total_segments = 0
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
loader = NotionLoader(
notion_access_token=data_source_binding.access_token,
notion_workspace_id=workspace_id,
notion_obj_id=page['page_id'],
notion_page_type=page['type']
)
documents = loader.load()
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
# get splitter
splitter = self._get_splitter(processing_rule)
# split to documents
documents = self._split_to_documents_for_estimate(
text_docs=documents,
splitter=splitter,
processing_rule=processing_rule
)
total_segments += len(documents)
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
for document in documents:
if len(preview_texts) < 5:
preview_texts.append(document.page_content)
if indexing_technique == 'high_quality' and embedding_model_type_instance:
tokens += embedding_model_type_instance.get_num_tokens(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
texts=[document.page_content]
)
if doc_form and doc_form == 'qa_model':
model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.LLM
)
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
if len(preview_texts) > 0:
# qa model document
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
doc_language)
document_qa_list = self.format_split_text(response)
price_info = model_type_instance.get_price(
model=model_instance.model,
credentials=model_instance.credentials,
price_type=PriceType.INPUT,
tokens=total_segments * 2000,
)
return {
"total_segments": total_segments * 20,
"tokens": total_segments * 2000,
"total_price": '{:f}'.format(price_info.total_amount),
"currency": price_info.currency,
"qa_preview": document_qa_list,
"preview": preview_texts
}
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
embedding_price_info = embedding_model_type_instance.get_price(
model=embedding_model_instance.model,
credentials=embedding_model_instance.credentials,
price_type=PriceType.INPUT,
tokens=tokens
)
2023-05-15 08:51:32 +08:00
return {
"total_segments": total_segments,
2023-05-15 08:51:32 +08:00
"tokens": tokens,
"total_price": '{:f}'.format(embedding_price_info.total_amount) if embedding_model_instance else 0,
"currency": embedding_price_info.currency if embedding_model_instance else 'USD',
2023-05-15 08:51:32 +08:00
"preview": preview_texts
}
def _load_data(self, dataset_document: DatasetDocument, automatic: bool = False) -> List[Document]:
2023-05-15 08:51:32 +08:00
# load file
if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
2023-05-15 08:51:32 +08:00
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == 'upload_file':
if not data_source_info or 'upload_file_id' not in data_source_info:
raise ValueError("no upload file found")
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
if file_detail:
text_docs = FileExtractor.load(file_detail, is_automatic=automatic)
elif dataset_document.data_source_type == 'notion_import':
loader = NotionLoader.from_document(dataset_document)
text_docs = loader.load()
2023-05-15 08:51:32 +08:00
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="splitting",
extra_update_params={
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
2023-05-15 08:51:32 +08:00
}
)
# replace doc id to document model id
text_docs = cast(List[Document], text_docs)
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
# remove invalid symbol
text_doc.page_content = self.filter_string(text_doc.page_content)
text_doc.metadata['document_id'] = dataset_document.id
text_doc.metadata['dataset_id'] = dataset_document.dataset_id
2023-05-15 08:51:32 +08:00
return text_docs
def filter_string(self, text):
2023-06-28 14:58:40 +08:00
text = re.sub(r'<\|', '<', text)
text = re.sub(r'\|>', '>', text)
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
return text
2023-05-15 08:51:32 +08:00
def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
2023-05-15 08:51:32 +08:00
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule.mode == "custom":
# The user-defined segmentation rule
rules = json.loads(processing_rule.rules)
segmentation = rules["segmentation"]
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
raise ValueError("Custom segment length should be between 50 and 1000.")
separator = segmentation["separator"]
if separator:
2023-05-15 08:51:32 +08:00
separator = separator.replace('\\n', '\n')
character_splitter = FixedRecursiveCharacterTextSplitter.from_gpt2_encoder(
2023-05-15 08:51:32 +08:00
chunk_size=segmentation["max_tokens"],
chunk_overlap=0,
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""]
2023-05-15 08:51:32 +08:00
)
else:
# Automatic segmentation
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_gpt2_encoder(
2023-05-15 08:51:32 +08:00
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=0,
separators=["\n\n", "", ".", " ", ""]
)
return character_splitter
2023-05-15 08:51:32 +08:00
def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
-> List[Document]:
2023-05-15 08:51:32 +08:00
"""
Split the text documents into documents and save them to the document segment.
2023-05-15 08:51:32 +08:00
"""
documents = self._split_to_documents(
2023-05-15 08:51:32 +08:00
text_docs=text_docs,
splitter=splitter,
processing_rule=processing_rule,
tenant_id=dataset.tenant_id,
document_form=dataset_document.doc_form,
document_language=dataset_document.doc_language
2023-05-15 08:51:32 +08:00
)
# save node to document segment
doc_store = DatasetDocumentStore(
2023-05-15 08:51:32 +08:00
dataset=dataset,
user_id=dataset_document.created_by,
document_id=dataset_document.id
2023-05-15 08:51:32 +08:00
)
# add document segments
doc_store.add_documents(documents)
2023-05-15 08:51:32 +08:00
# update document status to indexing
cur_time = datetime.datetime.utcnow()
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
2023-05-15 08:51:32 +08:00
}
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.utcnow()
}
)
return documents
2023-05-15 08:51:32 +08:00
def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
processing_rule: DatasetProcessRule, tenant_id: str,
document_form: str, document_language: str) -> List[Document]:
"""
Split the text documents into nodes.
"""
all_documents = []
2023-07-29 17:49:18 +08:00
all_qa_documents = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
2023-07-29 17:49:18 +08:00
for document_node in documents:
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
# delete Spliter character
page_content = document_node.page_content
if page_content.startswith(".") or page_content.startswith(""):
page_content = page_content[1:]
else:
page_content = page_content
document_node.page_content = page_content
split_documents.append(document_node)
2023-07-29 17:49:18 +08:00
all_documents.extend(split_documents)
# processing qa document
if document_form == 'qa_model':
for i in range(0, len(all_documents), 10):
2023-07-29 17:00:21 +08:00
threads = []
2023-07-29 17:49:18 +08:00
sub_documents = all_documents[i:i + 10]
2023-07-29 17:00:21 +08:00
for doc in sub_documents:
2023-07-29 17:49:18 +08:00
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
'flask_app': current_app._get_current_object(),
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
'document_language': document_language})
2023-07-29 17:00:21 +08:00
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
thread.join()
2023-07-29 17:49:18 +08:00
return all_qa_documents
return all_documents
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
format_documents = []
if document_node.page_content is None or not document_node.page_content.strip():
2023-07-29 17:49:18 +08:00
return
with flask_app.app_context():
try:
# qa model document
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
document_qa_list = self.format_split_text(response)
qa_documents = []
for result in document_qa_list:
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(result['question'])
qa_document.metadata['answer'] = result['answer']
qa_document.metadata['doc_id'] = doc_id
qa_document.metadata['doc_hash'] = hash
qa_documents.append(qa_document)
format_documents.extend(qa_documents)
except Exception as e:
logging.exception(e)
all_qa_documents.extend(format_documents)
def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
processing_rule: DatasetProcessRule) -> List[Document]:
2023-05-15 08:51:32 +08:00
"""
Split the text documents into nodes.
"""
all_documents = []
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
2023-05-15 08:51:32 +08:00
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document in documents:
if document.page_content is None or not document.page_content.strip():
continue
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document.page_content)
document.metadata['doc_id'] = doc_id
document.metadata['doc_hash'] = hash
split_documents.append(document)
all_documents.extend(split_documents)
2023-05-15 08:51:32 +08:00
return all_documents
2023-05-15 08:51:32 +08:00
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
if 'pre_processing_rules' in rules:
pre_processing_rules = rules["pre_processing_rules"]
for pre_processing_rule in pre_processing_rules:
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
# Remove extra spaces
pattern = r'\n{3,}'
text = re.sub(pattern, '\n\n', text)
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
text = re.sub(pattern, ' ', text)
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
# Remove email
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
text = re.sub(pattern, '', text)
# Remove URL
pattern = r'https?://[^\s]+'
text = re.sub(pattern, '', text)
return text
def format_split_text(self, text):
2023-12-11 15:53:37 +08:00
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
matches = re.findall(regex, text, re.UNICODE)
2023-11-13 19:05:32 +08:00
return [
{
"question": q,
"answer": re.sub(r"\n\s*", "\n", a.strip())
}
for q, a in matches if q and a
]
def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
2023-05-15 08:51:32 +08:00
"""
Build the index for the document.
"""
vector_index = IndexBuilder.get_index(dataset, 'high_quality')
keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
2023-05-15 08:51:32 +08:00
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
embedding_model_type_instance = None
if embedding_model_instance:
embedding_model_type_instance = embedding_model_instance.model_type_instance
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
for i in range(0, len(documents), chunk_size):
2023-05-15 08:51:32 +08:00
# check document is paused
self._check_document_paused_status(dataset_document.id)
chunk_documents = documents[i:i + chunk_size]
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
tokens += sum(
embedding_model_type_instance.get_num_tokens(
embedding_model_instance.model,
embedding_model_instance.credentials,
[document.page_content]
)
for document in chunk_documents
)
2023-05-15 08:51:32 +08:00
# save vector index
if vector_index:
vector_index.add_texts(chunk_documents)
2023-05-15 08:51:32 +08:00
# save keyword index
keyword_table_index.add_texts(chunk_documents)
2023-05-15 08:51:32 +08:00
document_ids = [document.metadata['doc_id'] for document in chunk_documents]
2023-05-15 08:51:32 +08:00
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.index_node_id.in_(document_ids),
2023-05-15 08:51:32 +08:00
DocumentSegment.status == "indexing"
).update({
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
2023-05-15 08:51:32 +08:00
DocumentSegment.completed_at: datetime.datetime.utcnow()
})
db.session.commit()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.utcnow(),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
2023-05-15 08:51:32 +08:00
}
)
def _check_document_paused_status(self, document_id: str):
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedException()
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
extra_update_params: Optional[dict] = None) -> None:
"""
Update the document indexing status.
"""
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
2023-05-15 08:51:32 +08:00
if count > 0:
raise DocumentIsPausedException()
document = DatasetDocument.query.filter_by(id=document_id).first()
if not document:
raise DocumentIsDeletedPausedException()
2023-05-15 08:51:32 +08:00
update_params = {
DatasetDocument.indexing_status: after_indexing_status
2023-05-15 08:51:32 +08:00
}
if extra_update_params:
update_params.update(extra_update_params)
DatasetDocument.query.filter_by(id=document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
2023-05-15 08:51:32 +08:00
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
"""
Batch add segments index processing
"""
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
# save vector index
index = IndexBuilder.get_index(dataset, 'high_quality')
if index:
index.add_texts(documents, duplicate_check=True)
# save keyword index
index = IndexBuilder.get_index(dataset, 'economy')
if index:
index.add_texts(documents)
2023-05-15 08:51:32 +08:00
class DocumentIsPausedException(Exception):
pass
class DocumentIsDeletedPausedException(Exception):
pass